The Smallest Eigenvalue of Hankel Matrices

被引:27
|
作者
Berg, Christian [1 ]
Szwarc, Ryszard [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math, DK-2100 Copenhagen, Denmark
[2] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[3] Univ Opole, Inst Math & Comp Sci, PL-45052 Opole, Poland
关键词
Hankel matrices; Orthogonal polynomials; ORTHOGONAL POLYNOMIALS; MOMENT PROBLEM;
D O I
10.1007/s00365-010-9109-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H-N =(s (n+m) ),0 <= n,m <= N, denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behavior of the smallest eigenvalue lambda (N) of H-N . It is proven that lambda (N) has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda (N) can be arbitrarily slow or arbitrarily fast in a sense made precise below. In the indeterminate case, where lambda (N) is known to be bounded below by a strictly positive constant, we prove that the limit of the nth smallest eigenvalue of H-N for N -> a tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed.
引用
收藏
页码:107 / 133
页数:27
相关论文
共 50 条
  • [31] Maximizing the smallest eigenvalue of grounded Laplacian matrices via edge addition
    Ru, Xinfeng
    Xia, Weiguo
    Cao, Ming
    AUTOMATICA, 2025, 176
  • [32] Almost Sure Limit of the Smallest Eigenvalue of Some Sample Correlation Matrices
    Han Xiao
    Wang Zhou
    Journal of Theoretical Probability, 2010, 23 : 1 - 20
  • [33] Distribution of the Smallest Eigenvalue of Complex Central Semi-correlated Wishart Matrices
    Niu, Fangfang
    Zhang, Haochuan
    Yang, Hongwen
    Yang, Dacheng
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1788 - 1792
  • [34] Finite N corrections to the limiting distribution of the smallest eigenvalue of Wishart complex matrices
    Perret, Anthony
    Schehr, Gregory
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2016, 5 (01)
  • [35] HANKEL MATRICES
    FLIESS, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1974, 53 (02): : 197 - 222
  • [36] HANKEL MATRICES
    WIDOM, H
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (01) : 1 - &
  • [37] ASYMPTOTIC BEHAVIOR OF THE SMALLEST EIGENVALUE OF MATRICES ASSOCIATED WITH COMPLETELY EVEN FUNCTIONS (mod r)
    Hong, Shaofang
    Loewy, Raphael
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (06) : 1681 - 1704
  • [38] Completing the Picture for the Smallest Eigenvalue of Real Wishart Matrices (vol 113, 250201, 2014)
    Akemann, G.
    Guhr, T.
    Kieburg, M.
    Wegner, R.
    Wirtz, T.
    PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [39] The smallest eigenvalue of the signless Laplacian
    de Lima, Leonardo Silva
    Oliveira, Carla Silva
    Maia de Abreu, Nair Maria
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2570 - 2584
  • [40] A note on the smallest eigenvalue of fullerenes
    Fowler, PW
    Hansen, P
    Stevanovic, D
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2003, (48) : 37 - 48