The Smallest Eigenvalue of Hankel Matrices

被引:27
|
作者
Berg, Christian [1 ]
Szwarc, Ryszard [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math, DK-2100 Copenhagen, Denmark
[2] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[3] Univ Opole, Inst Math & Comp Sci, PL-45052 Opole, Poland
关键词
Hankel matrices; Orthogonal polynomials; ORTHOGONAL POLYNOMIALS; MOMENT PROBLEM;
D O I
10.1007/s00365-010-9109-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H-N =(s (n+m) ),0 <= n,m <= N, denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behavior of the smallest eigenvalue lambda (N) of H-N . It is proven that lambda (N) has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda (N) can be arbitrarily slow or arbitrarily fast in a sense made precise below. In the indeterminate case, where lambda (N) is known to be bounded below by a strictly positive constant, we prove that the limit of the nth smallest eigenvalue of H-N for N -> a tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed.
引用
收藏
页码:107 / 133
页数:27
相关论文
共 50 条
  • [21] Asymptotic behaviour of linear eigenvalue statistics of Hankel matrices
    Kumar, A. S. Kiran
    Maurya, Shambhu Nath
    STATISTICS & PROBABILITY LETTERS, 2022, 181
  • [22] Polynomial Expression for Distribution of the Smallest Eigenvalue of Wishart Matrices
    Zhang, Haochuan
    Niu, Fangfang
    Yang, Hongwen
    Zhang, Xin
    Yang, Dacheng
    68TH IEEE VEHICULAR TECHNOLOGY CONFERENCE, FALL 2008, 2008, : 466 - 469
  • [24] On the Definiteness and the Second Smallest Eigenvalue of Signed Laplacian Matrices
    Li, Shuang
    Xia, Weiguo
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 (2347-2352): : 2347 - 2352
  • [25] Completing the Picture for the Smallest Eigenvalue of Real Wishart Matrices
    Akemann, G.
    Guhr, T.
    Kieburg, M.
    Wegner, R.
    Wirtz, T.
    PHYSICAL REVIEW LETTERS, 2014, 113 (25)
  • [26] The smallest eigenvalue distribution at the spectrum edge of random matrices
    Nagao, T
    Forrester, PJ
    NUCLEAR PHYSICS B, 1998, 509 (03) : 561 - 598
  • [27] Estimations for spectral radius of nonnegative matrices and the smallest eigenvalue of M-matrices
    Te Wang
    Hongbin Lv
    Haifeng Sang
    Journal of Inequalities and Applications, 2014
  • [28] Estimations for spectral radius of nonnegative matrices and the smallest eigenvalue of M-matrices
    Wang, Te
    Lv, Hongbin
    Sang, Haifeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [29] Eigenvalue asymptotics for a class of multi-variable Hankel matrices
    Tantalakis, Christos Panagiotis
    CONCRETE OPERATORS, 2023, 10 (01):
  • [30] Almost Sure Limit of the Smallest Eigenvalue of Some Sample Correlation Matrices
    Xiao, Han
    Zhou, Wang
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (01) : 1 - 20