The Smallest Eigenvalue of Hankel Matrices

被引:27
|
作者
Berg, Christian [1 ]
Szwarc, Ryszard [2 ,3 ]
机构
[1] Univ Copenhagen, Dept Math, DK-2100 Copenhagen, Denmark
[2] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[3] Univ Opole, Inst Math & Comp Sci, PL-45052 Opole, Poland
关键词
Hankel matrices; Orthogonal polynomials; ORTHOGONAL POLYNOMIALS; MOMENT PROBLEM;
D O I
10.1007/s00365-010-9109-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H-N =(s (n+m) ),0 <= n,m <= N, denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behavior of the smallest eigenvalue lambda (N) of H-N . It is proven that lambda (N) has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda (N) can be arbitrarily slow or arbitrarily fast in a sense made precise below. In the indeterminate case, where lambda (N) is known to be bounded below by a strictly positive constant, we prove that the limit of the nth smallest eigenvalue of H-N for N -> a tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed.
引用
收藏
页码:107 / 133
页数:27
相关论文
共 50 条
  • [1] The Smallest Eigenvalue of Hankel Matrices
    Christian Berg
    Ryszard Szwarc
    Constructive Approximation, 2011, 34 : 107 - 133
  • [2] The smallest eigenvalue of large Hankel matrices
    Zhu, Mengkun
    Chen, Yang
    Emmart, Niall
    Weems, Charles
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 375 - 387
  • [3] Computing the Smallest Eigenvalue of LargeIll-Conditioned Hankel Matrices
    Emmart, Niall
    Chen, Yang
    Weems, Charles C.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (01) : 104 - 124
  • [4] The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight
    Wang, Yuxi
    Chen, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 474
  • [5] The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight
    Zhu, Mengkun
    Emmart, Niall
    Chen, Yang
    Weems, Charles
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (09) : 3272 - 3288
  • [6] THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT
    Wang, Dan
    Zhu, Mengkun
    Chen, Yang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01): : 53 - 62
  • [7] The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight
    Zhu, Mengkun
    Chen, Yang
    Li, Chuanzhong
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (07)
  • [8] THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SINGULARLY PERTURBED GAUSSIAN WEIGHT
    Wang, Dan
    Zhu, Mengkun
    Chen, Yang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) : 153 - 160
  • [9] Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation
    Chen, Yang
    Sikorowski, Jakub
    Zhu, Mengkun
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [10] Eigenvalue estimates for Hankel matrices
    Zamarashkin, NL
    Tyrtyshnikov, EE
    SBORNIK MATHEMATICS, 2001, 192 (3-4) : 537 - 550