A note on the minimum size of a vertex pancyclic graph

被引:5
|
作者
Broersma, HJ [1 ]
机构
[1] UNIV TWENTE,FAC APPL MATH,NL-7500 AE ENSCHEDE,NETHERLANDS
关键词
D O I
10.1016/S0012-365X(96)00040-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph on n greater than or equal to 3 vertices. Then G is vertex pancyclic if every vertex of G is contained in cycles of length 3,4,...,n. Let m(n) denote the minimum number of edges of a vertex pancyclic graph on n vertices. We show that m(3) = 3, m(4) = 5, m(5) = 7, m(6) = 9, and 3/2n < m(n) less than or equal to [5/3n](n greater than or equal to 7).
引用
收藏
页码:29 / 32
页数:4
相关论文
共 50 条
  • [31] New Vertex-Degree Condition for Pancyclic Graphs
    顾国华
    宋增民
    徐新丽
    [J]. Journal of Southeast University(English Edition), 1998, (02) : 117 - 120
  • [32] An Algorithm for Minimum Feedback Vertex Set Problem on a Trapezoid Graph
    Honma, Hirotoshi
    Kitamura, Yutaro
    Masuyama, Shigeru
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (06) : 1381 - 1385
  • [33] Pancyclic out-arcs of a vertex in oriented graphs
    Guo, Qiaoping
    Li, Shengjia
    Li, Ruijuan
    Xu, Gaokui
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (20) : 759 - 761
  • [34] On (Kq, k) vertex stable graphs with minimum size
    Fouquet, J. -L.
    Thuillier, H.
    Vanherpe, J. -M.
    Wojda, A. P.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (14) : 2109 - 2118
  • [35] Bounding the size of a vertex-stabiliser in a finite vertex-transitive graph
    Praeger, Cheryl E.
    Spiga, Pablo
    Verret, Gabriel
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (03) : 797 - 819
  • [36] A note on the minimum size of an orthogonal array
    Beder, Jay H.
    McComack, Margaret Ann
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 3690 - 3697
  • [37] A NOTE ON LOCATING A CENTRAL VERTEX OF A 3-CACTUS GRAPH
    KINCAID, RK
    MAIMON, OZ
    [J]. COMPUTERS & OPERATIONS RESEARCH, 1990, 17 (03) : 315 - 320
  • [38] A note on the adjacent vertex distinguishing total chromatic number of graph
    Wang, Zhiwen
    [J]. ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2341 - 2345
  • [39] Computing a minimum cut in a graph with dynamic edges incident to a designated vertex
    Nagamochi, Hiroshi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2007, E90D (02): : 428 - 431
  • [40] PTAS for minimum k-path vertex cover in ball graph
    Zhang, Zhao
    Li, Xiaoting
    Shi, Yishuo
    Nie, Hongmei
    Zhu, Yuqing
    [J]. INFORMATION PROCESSING LETTERS, 2017, 119 : 9 - 13