Adaptive goodness-of-fit testing from indirect observations

被引:11
|
作者
Butucea, Cristina [1 ]
Matias, Catherine [2 ]
Pouet, Christophe [3 ]
机构
[1] Univ Sci & Technol Lille 1, Lab Paul Painleve, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
[2] CNRS, Lab Stat & Genome, UMR 8071, F-91000 Evry, France
[3] Univ Aix Marseille 1, Ctr Math & Informat, Lab Anal, CNRS,UMR 6632, F-13453 Marseille, France
关键词
Adaptive nonparametric tests; Convolution model; Goodness-of-fit tests; Infinitely differentiable functions; Partially known noise; Quadratic functional estimation; Sobolev classes; Stable laws; U-STATISTICS; INEQUALITIES;
D O I
10.1214/08-AIHP166
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a convolution model, we observe random variables whose distribution is the convolution of some unknown density f and some known noise density g. We assume that g is polynomially smooth. We provide goodness-of-fit testing procedures for the test H(0): f = f(0), where the alternative H(1) is expressed with respect to L(2)-norm (i.e. has the form psi(-2)(n) parallel to f - f(0)parallel to(2)(2) >= C). Our procedure is adaptive with respect to the unknown smoothness parameter tau of f. Different testing rates (psi(n)) are obtained according to whether f(0) is polynomially or exponentially smooth. A price for adaptation is noted and for computing this, we provide a non-uniform Berry-Esseen type theorem for degenerate U-statistics. In the case of polynomially smooth f(0), we prove that the price for adaptation is optimal. We emphasise the fact that the alternative may contain functions smoother than the null density to be tested, which is new in the context of goodness-of-fit tests.
引用
收藏
页码:352 / 372
页数:21
相关论文
共 50 条
  • [1] Goodness-of-fit testing strategies from indirect observations
    Loubes, J. M.
    Marteau, C.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (01) : 85 - 99
  • [2] Goodness-of-fit testing and quadratic functional estimation from indirect observations
    Butucea, Cristina
    [J]. ANNALS OF STATISTICS, 2007, 35 (05): : 1907 - 1930
  • [3] Goodness-of-fit testing the error distribution in multivariate indirect regression
    Chown, Justin
    Bissantz, Nicolai
    Dette, Holger
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 2658 - 2685
  • [4] An adaptive goodness-of-fit test
    Grane, A
    Fortiana, J
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (06) : 1141 - 1155
  • [5] Goodness-of-fit tests with dependent observations
    Chicheportiche, Remy
    Bouchaud, Jean-Philippe
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [6] Testing goodness-of-fit with interval data
    Vozhov, Stanislav S.
    Chimitova, Ekaterina V.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2016, 34 (01): : 35 - 42
  • [7] Order statistics in goodness-of-fit testing
    Glen, AG
    Leemis, LM
    Barr, DR
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2001, 50 (02) : 209 - 213
  • [8] Power maps in goodness-of-fit testing
    Fischer, T.
    Kamps, U.
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1365 - 1382
  • [9] Minimax nonparametric goodness-of-fit testing
    Ingster, YI
    Suslina, IA
    [J]. FOUNDATIONS OF STATISTICAL INFERENCE, 2003, : 141 - 152
  • [10] Goodness-of-fit testing: the thresholding approach
    Kim, Min Hee
    Akritas, Michael G.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) : 119 - 138