Goodness-of-fit tests with dependent observations

被引:20
|
作者
Chicheportiche, Remy [1 ,2 ]
Bouchaud, Jean-Philippe [1 ]
机构
[1] Capital Fund Management, F-75009 Paris, France
[2] Ecole Cent Paris, Lab Appl Math & Syst, Chair Quantitat Finance, F-92290 Chatenay Malabry, France
关键词
models of financial markets; stochastic processes; extreme value statistics; KOLMOGOROV-SMIRNOV; MULTIFRACTAL MODEL; ASSET RETURNS; LEVERAGE; FLUCTUATIONS; COPULAS; CASCADE;
D O I
10.1088/1742-5468/2011/09/P09003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We revisit the Kolmogorov-Smirnov and Cramer-von Mises goodness-of-fit (GoF) tests and propose a generalization to identically distributed, but dependent univariate random variables. We show that the dependence leads to a reduction of the 'ffective' number of independent observations. The generalized GoF tests are not distribution-free but rather depend on all the lagged bivariate copulas. These objects, that we call 'self-copulas', encode all the non-linear temporal dependences. We introduce a specific, log-normal model for these self-copulas, for which a number of analytical results are derived. An application to financial time series is provided. As is well known, the dependence is to be long-ranged in this case, a finding that we confirm using self-copulas. As a consequence, the acceptance rates for GoF tests are substantially higher than if the returns were iid random variables.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Goodness-of-Fit tests for dependent data
    Ignaccolo, R
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 19 - 38
  • [2] Asymptotically optimum grouping of observations in goodness-of-fit tests
    Lemeshko, BY
    [J]. INDUSTRIAL LABORATORY, 1998, 64 (01): : 59 - 67
  • [3] Goodness-of-Fit Tests for Multiplicative Models with Dependent Data
    Dette, Holger
    Carlos Pardo-Fernandez, Juan
    Van Keilegom, Ingrid
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (04) : 782 - 799
  • [4] Goodness-of-Fit Tests on Manifolds
    Shapiro, Alexander
    Xie, Yao
    Zhang, Rui
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (04) : 2539 - 2553
  • [5] Tuning goodness-of-fit tests
    Arrasmith, A.
    Follin, B.
    Anderes, E.
    Knox, L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (02) : 1889 - 1898
  • [6] MULTINOMIAL GOODNESS-OF-FIT TESTS
    CRESSIE, N
    READ, TRC
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1984, 46 (03): : 440 - 464
  • [7] MULTIVARIATE GOODNESS-OF-FIT TESTS
    ROSENBLATT, J
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02): : 807 - &
  • [8] Goodness-of-fit tests for copulas
    Fermanian, JD
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (01) : 119 - 152
  • [9] IMPROVED GOODNESS-OF-FIT TESTS
    FINKELSTEIN, JM
    SCHAFER, RE
    [J]. BIOMETRIKA, 1971, 58 (03) : 641 - +
  • [10] GOODNESS-OF-FIT TESTS ON A CIRCLE
    WATSON, GS
    [J]. BIOMETRIKA, 1961, 48 (1-2) : 109 - &