Goodness-of-fit testing the error distribution in multivariate indirect regression

被引:1
|
作者
Chown, Justin [1 ]
Bissantz, Nicolai [1 ]
Dette, Holger [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Lehrstuhl Stochast, D-44780 Bochum, Germany
来源
ELECTRONIC JOURNAL OF STATISTICS | 2019年 / 13卷 / 02期
关键词
Hypothesis testing; indirect regression; inverse problems; multivariate regression; regularization; DECONVOLUTION; CONVERGENCE; ADAPTATION;
D O I
10.1214/19-EJS1591
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a goodness-of-fit test for the distribution of errors from a multivariate indirect regression model, which we assume belongs to a location-scale family under the null hypothesis. The test statistic is based on the Khmaladze transformation of the empirical process of standardized residuals. This goodness-of-fit test is consistent at the root-n rate of convergence, and the test can maintain power against local alternatives converging to the null at a root-n rate.
引用
收藏
页码:2658 / 2685
页数:28
相关论文
共 50 条