Computing a minimum-width square or rectangular annulus with outliers

被引:2
|
作者
Bae, Sang Won [1 ]
机构
[1] Kyonggi Univ, Div Comp Sci & Engn, Suwon, South Korea
基金
新加坡国家研究基金会;
关键词
Geometric covering problem; Square annulus; Rectangular annulus; Outlier; K-POINTS; OPTIMIZATION;
D O I
10.1016/j.comgeo.2018.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A square or rectangular annulus is the closed region between a square or rectangle and its offset. In this paper, we address the problem of computing a minimum-width square or rectangular annulus that contains at least n - k points out of n given points in the plane. The k excluded points are considered as outliers of the n input points. We present several first algorithms to the problem. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [21] Minimum-width grid drawings of plane graphs
    Chrobak, M
    Nakano, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 11 (01): : 29 - 54
  • [22] Approximation algorithms for minimum-width annuli and shells
    Agarwal, PK
    Aronov, B
    Har-Peled, S
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (04) : 687 - 705
  • [23] Exact and approximation algorithms for minimum-width cylindrical shells
    Agarwal, PK
    Aronov, B
    Sharir, M
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 510 - 517
  • [25] Exact and Approximation Algorithms for Minimum-Width Cylindrical Shells
    P. K. Agarwal
    B. Aronov
    M. Sharir
    Discrete & Computational Geometry, 2001, 26 : 307 - 320
  • [26] Minimum-Width Confidence Bands via Constraint Optimization
    Berg, Jeremias
    Oikarinen, Emilia
    Jarvisalo, Matti
    Puolamaki, Kai
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING (CP 2017), 2017, 10416 : 443 - 459
  • [27] Exact and approximation algorithms for minimum-width cylindrical shells
    Agarwal, PK
    Aronov, B
    Sharir, M
    DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (03) : 307 - 320
  • [28] Approximation and exact algorithms for minimum-width annuli and shells
    Agarwal, Pankaj K.
    Aronov, Boris
    Har-Peled, Sariel
    Sharir, Micha
    Proceedings of the Annual Symposium on Computational Geometry, 1999, : 380 - 389
  • [29] A heuristic for minimum-width graph layering with consideration of dummy nodes
    Tarassov, A
    Nikolov, NS
    Branke, J
    EXPERIMENTAL AND EFFICIENT ALGORITHMS, 2004, 3059 : 570 - 583
  • [30] A data-parallel algorithm for minimum-width tree layout
    Lang, W
    INFORMATION PROCESSING LETTERS, 1998, 67 (01) : 21 - 28