ASYMPTOTIC PROPERTIES OF PENALIZED SPLINE ESTIMATORS IN CONCAVE EXTENDED LINEAR MODELS: RATES OF CONVERGENCE

被引:4
|
作者
Huang, Jianhua Z. [1 ]
Su, Ya [2 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
来源
ANNALS OF STATISTICS | 2021年 / 49卷 / 06期
关键词
Basis expansion; multivariate splines; nonparametric regression; polynomial splines; smoothing splines; REGRESSION; DENSITY;
D O I
10.1214/21-AOS2088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a general theory on rates of convergence of penalized spline estimators for function estimation when the likelihood functional is concave in candidate functions, where the likelihood is interpreted in a broad sense that includes conditional likelihood, quasi-likelihood and pseudo-likelihood. The theory allows all feasible combinations of the spline degree, the penalty order and the smoothness of the unknown functions. According to this theory, the asymptotic behaviors of the penalized spline estimators depends on interplay between the spline knot number and the penalty parameter. The general theory is applied to obtain results in a variety of contexts, including regression, generalized regression such as logistic regression and Poisson regression, density estimation, conditional hazard function estimation for censored data, quantile regression, diffusion function estimation for a diffusion type process and estimation of spectral density function of a stationary time series. For multidimensional function estimation, the theory (presented in the Supplementary Material) covers both penalized tensor product splines and penalized bivariate splines on triangulations.
引用
收藏
页码:3383 / 3407
页数:25
相关论文
共 50 条
  • [31] STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS
    Zhou Yong
    You Jinhong
    Wang Xiaojing
    [J]. ACTA MATHEMATICA SCIENTIA, 2009, 29 (05) : 1113 - 1127
  • [32] STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS
    周勇
    尤进红
    王晓婧
    [J]. Acta Mathematica Scientia, 2009, 29 (05) : 1113 - 1127
  • [33] On asymptotic properties of the QLM estimators for GARCH models
    Cavicchioli, Maddalena
    [J]. ECONOMICS BULLETIN, 2013, 33 (02): : 959 - 966
  • [34] Convergence properties of wavelet estimators with multiple sampling rates
    Hall, P
    Kerkyacharian, G
    Picard, D
    [J]. STATISTICA SINICA, 2004, 14 (02) : 377 - 393
  • [35] Spline adaptation in extended linear models - Comments and rejoinder
    Chipman, HA
    George, EI
    McCulloch, RE
    Holmes, CC
    Kass, RE
    Wallstrom, G
    Koenker, R
    Mizera, I
    Lindstrom, MJ
    Wahba, G
    Lin, Y
    Leng, CL
    Ruppert, D
    Hansen, MH
    Kooperberg, C
    [J]. STATISTICAL SCIENCE, 2002, 17 (01) : 20 - 51
  • [36] Penalized Lq-likelihood estimators and variable selection in linear regression models
    Hu, Hongchang
    Zeng, Zhen
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (17) : 5957 - 5970
  • [37] Local influence analysis for penalized Gaussian likelihood estimators in partially linear models
    Zhu, ZY
    He, XM
    Fung, WK
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (04) : 767 - 780
  • [38] Non-asymptotic estimators of convergence rates of implementations of the stochastic approximation algorithms
    Kul'chitskij, O.Yu.
    Mozgovoj, A.E.
    [J]. Avtomatika i Telemekhanika, 1997, (11): : 144 - 152
  • [39] RATES OF CONVERGENCE OF M-ESTIMATORS FOR PARTLY LINEAR-MODELS INVOLVING TIME-SERIES
    SHI, PD
    ZHENG, ZG
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1995, 38 (05): : 533 - 541
  • [40] Statistical inference on asymptotic properties of two estimators for the partially linear single-index models
    Yang, Jing
    Lu, Fang
    Yang, Hu
    [J]. STATISTICS, 2018, 52 (06) : 1193 - 1211