Penalized Lq-likelihood estimators and variable selection in linear regression models

被引:2
|
作者
Hu, Hongchang [1 ]
Zeng, Zhen [2 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
[2] Nanjin Univ Finana & Econ, Sch Appl Math, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear regression models; penalized Lq-likelihood estimators; oracle properties; influence function; SPARSE;
D O I
10.1080/03610926.2020.1850794
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a linear regression model yi = x(i)(T) beta + e(i), i = 1,2,..., n, where {e(i)} are independent identically distributed (iid) random variables with zero mean and known variance sigma(2). Based on the maximum Lq-likelihood estimator (MLqE) and the penalized likelihood estimator (PLE), we introduce a new parametric estimator which is called penalized Lq-likelihood estimator (PLqE). We investigate its Oracle properties and influence function. Simulation results support the validity of our approach. Furthermore, it is shown that the PLqE is robust, while the PLE is not.
引用
收藏
页码:5957 / 5970
页数:14
相关论文
共 50 条
  • [1] Penalized Lq-likelihood estimator and its influence function in generalized linear models
    Hu, Hongchang
    Liu, Mingqiu
    Zeng, Zhen
    [J]. METRIKA, 2024,
  • [2] Penalized empirical likelihood based variable selection for partially linear quantile regression models with missing responses
    Tang, Xinrong
    Zhao, Peixin
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 721 - 739
  • [3] A Penalized h-Likelihood Variable Selection Algorithm for Generalized Linear Regression Models with Random Effects
    Xie, Yanxi
    Li, Yuewen
    Xia, Zhijie
    Yan, Ruixia
    Luan, Dongqing
    [J]. COMPLEXITY, 2020, 2020
  • [4] Robust estimation in beta regression via maximum Lq-likelihood
    Ribeiro, Terezinha K. A.
    Ferrari, Silvia L. P.
    [J]. STATISTICAL PAPERS, 2023, 64 (01) : 321 - 353
  • [5] Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization
    Giuzio, Margherita
    Ferrari, Davide
    Paterlini, Sandra
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 250 (01) : 251 - 261
  • [6] Penalized likelihood and Bayesian function selection in regression models
    Fabian Scheipl
    Thomas Kneib
    Ludwig Fahrmeir
    [J]. AStA Advances in Statistical Analysis, 2013, 97 : 349 - 385
  • [7] Penalized likelihood and Bayesian function selection in regression models
    Scheipl, Fabian
    Kneib, Thomas
    Fahrmeir, Ludwig
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (04) : 349 - 385
  • [8] Variable selection via generalized SELO-penalized linear regression models
    SHI Yue-yong
    CAO Yong-xiu
    YU Ji-chang
    JIAO Yu-ling
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2018, 33 (02) : 145 - 162
  • [9] Regularization Methods Based on the Lq-Likelihood for Linear Models with Heavy-Tailed Errors
    Hirose, Yoshihiro
    [J]. ENTROPY, 2020, 22 (09)
  • [10] Variable selection via generalized SELO-penalized linear regression models
    Yue-yong Shi
    Yong-xiu Cao
    Ji-chang Yu
    Yu-ling Jiao
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2018, 33 : 145 - 162