ON THE SPECTRAL MOMENT OF GRAPHS WITH GIVEN CLIQUE NUMBER

被引:3
|
作者
Li, Shuchao [1 ]
Hu, Shuna [1 ]
机构
[1] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral moment; clique number; chromatic number; TREES; VERTICES; THEOREM;
D O I
10.1216/RMJ-2016-46-1-261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L-n,L-t be the set of all nvertex connected graphs with clique number t (2 <= t <= n). For n-vertex connected graphs with given clique number, lexicographic ordering by spectral moments (Sorder) is discussed in this paper. The first Sigma([(n-t-1)/3])(i=1)(n-t-3i) + 1 graphs with 3 <= t <= n-4, and the last few graphs, in the S-order, among are characterized. In addition, all graphs in Ln,nULn,n-1 have an S-order; for the cases t = n-2 and t = n-3, the first three and the first seven graphs in the set L-n,L-t are characterized, respectively.
引用
收藏
页码:261 / 282
页数:22
相关论文
共 50 条
  • [1] The Smallest Spectral Radius of Graphs with a Given Clique Number
    Zhang, Jing-Ming
    Huang, Ting-Zhu
    Guo, Ji-Ming
    [J]. SCIENTIFIC WORLD JOURNAL, 2014,
  • [2] The smallest Laplacian spectral radius of graphs with a given clique number
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (04) : 1109 - 1122
  • [3] The smallest signless Laplacian spectral radius of graphs with a given clique number
    Zhang, Jing-Ming
    Huang, Ting-Zhu
    Guo, Ji-Ming
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) : 2562 - 2576
  • [4] THE MINIMUM SPECTRAL RADIUS OF SIGNLESS LAPLACIAN OF GRAPHS WITH A GIVEN CLIQUE NUMBER
    Su, Li
    Li, Hong-Hai
    Zhang, Jing
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 95 - 102
  • [5] On connectivity in graphs with given clique number
    Hellwig, A
    Volkmann, L
    [J]. JOURNAL OF GRAPH THEORY, 2006, 52 (01) : 7 - 14
  • [6] On Local Connectivity of Graphs with Given Clique Number
    holtkamp, Andreas
    Volkmann, Lutz
    [J]. JOURNAL OF GRAPH THEORY, 2010, 63 (03) : 192 - 197
  • [7] The Zagreb indices of graphs with a given clique number
    Xu, Kexiang
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 1026 - 1030
  • [8] Connectivity and eigenvalues of graphs with given girth or clique number
    Hong, Zhen-Mu
    Lai, Hong-Jian
    Xia, Zheng-Jiang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 607 : 319 - 340
  • [9] A New Spectral Bound on the Clique Number of Graphs
    Bulo, Samuel Rota
    Pelillo, Marcello
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 680 - 689
  • [10] Clique number and distance spectral radii of graphs
    Zhai, Mingqing
    Yu, Guanglong
    Shu, Jinlong
    [J]. ARS COMBINATORIA, 2012, 104 : 385 - 392