Connectivity and eigenvalues of graphs with given girth or clique number

被引:7
|
作者
Hong, Zhen-Mu [1 ]
Lai, Hong-Jian [2 ]
Xia, Zheng-Jiang [1 ]
机构
[1] Anhui Univ Finance & Econ, Sch Finance, Bengbu 233030, Anhui, Peoples R China
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Eigenvalue; Algebraic connectivity; Vertex-connectivity; Edge-connectivity; Girth; Clique number; DISJOINT SPANNING-TREES; VERTEX-CONNECTIVITY; EDGE-CONNECTIVITY; EIGENVECTORS; MATRICES;
D O I
10.1016/j.laa.2020.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let kappa'(G), mu(n-1)(G) and mu(1)(G) denote the edge-connectivity, the algebraic connectivity and the Laplacian spectral radius of G, respectively. In this paper, we prove that for integers k >= 2and r >= 2, and any simple graph Gof order nwith minimum degree delta >= k, girth g >= 3and clique number.(G) = r, the edge-connectivity omega(G) <= r/mu(n-1)(G) =(k-1) nN(delta,g)(n-N(delta,g)) or if mu(n-1)(G) >= (k-1)/phi(delta,r)(n-phi(delta,r)), where N(delta, g) is the Moore bound on the smallest possible number of vertices such that there exists a delta-regular simple graph with girth g, and phi(delta, r) = max{delta+ 1, [r delta/r-1]. Analogue results involving mu(n-1)(G) and mu(1)(G) mu(n-1)(G) to characterize vertexconnectivity of graphs with fixed girth and clique number are also presented. Former results in Liu et al. (2013) [22], Liu et al. (2019) [20], Hong et al. (2019) [15], Liu et al. (2019) [21] and Abiad et al. (2018) [1] are improved or extended. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:319 / 340
页数:22
相关论文
共 50 条
  • [1] On connectivity in graphs with given clique number
    Hellwig, A
    Volkmann, L
    [J]. JOURNAL OF GRAPH THEORY, 2006, 52 (01) : 7 - 14
  • [2] On Local Connectivity of Graphs with Given Clique Number
    holtkamp, Andreas
    Volkmann, Lutz
    [J]. JOURNAL OF GRAPH THEORY, 2010, 63 (03) : 192 - 197
  • [3] Fractional arboricity, strength and eigenvalues of graphs with fixed girth or clique number
    Hong, Zhen-Mu
    Xia, Zheng-Jiang
    Lai, Hong-Jian
    Liu, Ruifang
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 611 : 135 - 147
  • [4] Spanning tree packing number and eigenvalues of graphs with given girth
    Liu, Ruifang
    Lai, Hong-Jian
    Tian, Yingzhi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 411 - 424
  • [5] GRAPHS AND DIGRAPHS WITH GIVEN GIRTH AND CONNECTIVITY
    LIU, JP
    ZHOU, HS
    [J]. DISCRETE MATHEMATICS, 1994, 132 (1-3) : 387 - 390
  • [6] Connectivity of graphs with given girth pair
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    Marcote, X.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (02) : 155 - 162
  • [7] The forcing number of graphs with given girth
    Davila, Randy
    Henning, Michael A.
    [J]. QUAESTIONES MATHEMATICAE, 2018, 41 (02) : 189 - 204
  • [8] On the restricted connectivity and superconnectivity in graphs with given girth
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    Marcote, X.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (06) : 659 - 667
  • [9] Vertex-connectivity and eigenvalues of graphs with fixed girth
    Liu, Ruifang
    Lai, Hong-Jian
    Tian, Yingzhi
    Wu, Yang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 344 : 141 - 149
  • [10] ON THE SPECTRAL MOMENT OF GRAPHS WITH GIVEN CLIQUE NUMBER
    Li, Shuchao
    Hu, Shuna
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (01) : 261 - 282