The Smallest Spectral Radius of Graphs with a Given Clique Number

被引:1
|
作者
Zhang, Jing-Ming [1 ,2 ]
Huang, Ting-Zhu [1 ]
Guo, Ji-Ming [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[3] E China Univ Sci & Technol, Coll Sci, Shanghai 200237, Peoples R China
来源
关键词
TREES;
D O I
10.1155/2014/232153
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The first four smallest values of the spectral radius among all connected graphs with maximum clique size omega >= 2 are obtained.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The smallest Laplacian spectral radius of graphs with a given clique number
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (04) : 1109 - 1122
  • [2] The smallest signless Laplacian spectral radius of graphs with a given clique number
    Zhang, Jing-Ming
    Huang, Ting-Zhu
    Guo, Ji-Ming
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) : 2562 - 2576
  • [3] THE MINIMUM SPECTRAL RADIUS OF SIGNLESS LAPLACIAN OF GRAPHS WITH A GIVEN CLIQUE NUMBER
    Su, Li
    Li, Hong-Hai
    Zhang, Jing
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 95 - 102
  • [4] ON THE SPECTRAL MOMENT OF GRAPHS WITH GIVEN CLIQUE NUMBER
    Li, Shuchao
    Hu, Shuna
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (01) : 261 - 282
  • [5] The minimum spectral radius of graphics with a given clique number
    Stevanovic, Dragan
    Hansen, Pierre
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2008, 17 : 110 - 117
  • [6] Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 1039 - 1048
  • [7] Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
    Kinkar Ch. Das
    Muhuo Liu
    [J]. Czechoslovak Mathematical Journal, 2016, 66 : 1039 - 1048
  • [8] The spectral radius of graphs with given independence number
    Lou, Zhenzhen
    Guo, Ji-Ming
    [J]. DISCRETE MATHEMATICS, 2022, 345 (04)
  • [9] On the spectral radius of graphs with a given domination number
    Stevanovic, Dragan
    Aouchiche, Mustapha
    Hansen, Pierre
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) : 1854 - 1864
  • [10] Spectral radius of graphs with given matching number
    Feng, Lihua
    Yu, Guihai
    Zhang, Xiao-Dong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) : 133 - 138