Stereo Depth Map Fusion for Robot Navigation

被引:0
|
作者
Haene, Christian [1 ]
Zach, Christopher [1 ]
Lim, Jongwoo [2 ]
Ranganathan, Ananth [2 ]
Pollefeys, Marc [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[2] Honda Res Inst, Mountain View, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method to reconstruct indoor environments from stereo image pairs, suitable for the navigation of robots. To enable a robot to navigate solely using visual cues it receives from a stereo camera, the depth information needs to be extracted from the image pairs and combined into a common representation. The initially determined raw depthmaps are fused into a two level heightmap representation which contains a floor and a ceiling height level. To reduce the noise in the height maps we employ a total variation regularized energy functional. With this 2.5D representation of the scene the computational complexity of the energy optimization is reduced by one dimension in contrast to other fusion techniques that work on the full 3D space such as volumetric fusion. While we show only results for indoor environments the approach can be extended to generate heightmaps for outdoor environments.
引用
收藏
页码:1618 / 1625
页数:8
相关论文
共 50 条
  • [1] DEPTH MAP CONSTRUCTION WITH STEREO VISION for HUMANOID ROBOT NAVIGATION
    Vargas-Signoret, M. I.
    Rojas-Romero, M.
    Trejo-Avila, I.
    Velasco-Avella, J.
    Robles-Martinez, E. E.
    Santoyo-Mora, M.
    Camarillo-Gomez, K. A.
    Perez-Soto, G. I.
    Morales-Hernandez, A.
    2016 XVIII CONGRESO MEXICANO DE ROBOTICA (COMROB 2016), 2016,
  • [2] Depth map calibration by stereo and wireless sensor network fusion
    Scherba, DJ
    Bajcsy, P
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 1540 - 1547
  • [3] Fusion of Stereo and Lidar Data for Dense Depth Map Computation
    Courtois, Hugo
    Aouf, Nabil
    2017 WORKSHOP ON RESEARCH, EDUCATION AND DEVELOPMENT OF UNMANNED AERIAL SYSTEMS (RED-UAS), 2017, : 186 - 191
  • [4] Comparative Analysis of Approaches to Depth Map Generation for Robot Navigation
    Rubtsova, Julia
    Iakovlev, Roman
    INTERACTIVE COLLABORATIVE ROBOTICS, ICR 2020, 2020, 12336 : 265 - 272
  • [5] Probabilistic Depth Map Fusion of Kinect and Stereo in Real-Time
    Duan, Yong
    Pei, Mingtao
    Wang, Yucheng
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [6] Robustness of ToF and stereo fusion for high-accuracy depth map
    Bao, Zhenshan
    Li, Bowen
    Zhang, Wenbo
    IET COMPUTER VISION, 2019, 13 (07) : 676 - 681
  • [7] Depth Map Generation for a Reconnaissance Robot via Sensor Fusion
    Abeysekara, A. H. A. D.
    Liyanage, D. P.
    Welikala, W. R. E. B. S.
    Godaliyadda, G. M. R. I.
    Eakanayake, M. P. B.
    Wijayakulasooriya, J. V.
    2015 IEEE 10TH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2015, : 320 - 325
  • [8] Validation of Stereo Matching for Robot Navigation
    Lidholm, Jorgen
    Spampinato, Giacomo
    Asplund, Lars
    2009 IEEE CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (EFTA 2009), 2009,
  • [9] DENSE DEPTH ESTIMATION FOR SURGICAL ENDOSCOPE ROBOT WITH MULTI-BASELINE DEPTH MAP FUSION
    Tan, Zhidong
    Song, Rihui
    Huang, Kai
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2230 - 2234
  • [10] Probabilistic Depth Map Fusion for Real-Time Multi-View Stereo
    Duan Yong
    Pei Mingtao
    Jia Yunde
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 368 - 371