DENSE DEPTH ESTIMATION FOR SURGICAL ENDOSCOPE ROBOT WITH MULTI-BASELINE DEPTH MAP FUSION

被引:1
|
作者
Tan, Zhidong [1 ]
Song, Rihui [1 ]
Huang, Kai [1 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
关键词
Surgical endoscope; multi-baseline stereo; depth map processing; image fusion;
D O I
10.1109/ICIP49359.2023.10222752
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dense depth estimation in endoscopic images can provide surgeons with important information for performing accurate minimally invasive surgeries. However, it is difficult to estimate the absolute depth of the scene based on monocular endoscope. Depth values in endoscopic images change drastically during the operation, which make it hard to estimate them with a fixed baseline. In this paper, we propose a depth estimation scheme with multiple baselines. The monocular endoscope is moved horizontally by a robotic endoscope holder to generate stereo images. A pixel-level depth map fusion algorithm is designed to combine depth values estimated with different baselines. Experimental results show that the proposed method improves the accuracy of depth estimation and the visual quality of depth maps.
引用
收藏
页码:2230 / 2234
页数:5
相关论文
共 50 条
  • [1] Multi-baseline based texture adaptive belief propagation stereo matching technique for dense depth-map acquisition
    Kim, Jin-Hyung
    Kwon, Jae W.
    Ko, Yun Ho
    2014 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION AND COMMUNICATIONS (ICEIC), 2014,
  • [2] Monocular Depth Estimation Based on Multi-Scale Depth Map Fusion
    Yang, Xin
    Chang, Qingling
    Liu, Xinglin
    He, Siyuan
    Cui, Yan
    IEEE ACCESS, 2021, 9 : 67696 - 67705
  • [3] Stereo Depth Map Fusion for Robot Navigation
    Haene, Christian
    Zach, Christopher
    Lim, Jongwoo
    Ranganathan, Ananth
    Pollefeys, Marc
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 1618 - 1625
  • [4] Monocular Dense Reconstruction by Depth Estimation Fusion
    Chen, Tian
    Ding, Wendong
    Zhang, Dapeng
    Liu, Xilong
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 4460 - 4465
  • [5] A Discussion of Optimization about Stereo Image Depth Estimation Based on Multi-baseline Trinocular Camera Model
    Wang, Hanrong
    Li, Ming
    Wang, Jie
    Li, Yang
    Du, Sidan
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2021), 2021, : 1716 - 1720
  • [6] Dense Depth-Map Estimation Based on Fusion of Event Camera and Sparse LiDAR
    Cui, Mingyue
    Zhu, Yuzhang
    Liu, Yechang
    Liu, Yunchao
    Chen, Gang
    Huang, Kai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] Dense depth map estimation for multiple view coding
    Ozkalayci, Burak
    Alatan, A. Aydin
    2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 531 - +
  • [8] Fast Semi-dense Depth Map Estimation
    Makarov, Ilya
    Korinevskaya, Alisa
    Aliev, Vladimir
    RETECH'18: PROCEEDINGS OF THE 2018 ACM WORKSHOP ON MULTIMEDIA FOR REAL ESTATE TECH, 2018, : 18 - 21
  • [9] Fusion of Stereo and Lidar Data for Dense Depth Map Computation
    Courtois, Hugo
    Aouf, Nabil
    2017 WORKSHOP ON RESEARCH, EDUCATION AND DEVELOPMENT OF UNMANNED AERIAL SYSTEMS (RED-UAS), 2017, : 186 - 191
  • [10] Depth Map Generation for a Reconnaissance Robot via Sensor Fusion
    Abeysekara, A. H. A. D.
    Liyanage, D. P.
    Welikala, W. R. E. B. S.
    Godaliyadda, G. M. R. I.
    Eakanayake, M. P. B.
    Wijayakulasooriya, J. V.
    2015 IEEE 10TH INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2015, : 320 - 325