DENSE DEPTH ESTIMATION FOR SURGICAL ENDOSCOPE ROBOT WITH MULTI-BASELINE DEPTH MAP FUSION

被引:1
|
作者
Tan, Zhidong [1 ]
Song, Rihui [1 ]
Huang, Kai [1 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
关键词
Surgical endoscope; multi-baseline stereo; depth map processing; image fusion;
D O I
10.1109/ICIP49359.2023.10222752
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dense depth estimation in endoscopic images can provide surgeons with important information for performing accurate minimally invasive surgeries. However, it is difficult to estimate the absolute depth of the scene based on monocular endoscope. Depth values in endoscopic images change drastically during the operation, which make it hard to estimate them with a fixed baseline. In this paper, we propose a depth estimation scheme with multiple baselines. The monocular endoscope is moved horizontally by a robotic endoscope holder to generate stereo images. A pixel-level depth map fusion algorithm is designed to combine depth values estimated with different baselines. Experimental results show that the proposed method improves the accuracy of depth estimation and the visual quality of depth maps.
引用
收藏
页码:2230 / 2234
页数:5
相关论文
共 50 条
  • [41] Multi-baseline polarimetric SAR interferometry for vegetation parameters estimation
    Papathanassiou, KP
    Cloude, SR
    Reigber, A
    Boerner, WM
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2762 - 2764
  • [42] Fully convolutional multi-scale dense networks for monocular depth estimation
    Liu, Jiwei
    Zhang, Yunzhou
    Cui, Jiahua
    Feng, Yonghui
    Pang, Linzhuo
    IET COMPUTER VISION, 2019, 13 (05) : 515 - 522
  • [43] Differentiable Diffusion for Dense Depth Estimation from Multi-view Images
    Khan, Numair
    Kim, Min H.
    Tompkin, James
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8908 - 8917
  • [44] A MULTI-RESOLUTION APPROACH TO DEPTH FIELD ESTIMATION IN DENSE IMAGE ARRAYS
    Neri, Alessandro
    Carli, Marco
    Battisti, Federica
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3358 - 3362
  • [45] Light field scale-depth space transform for dense depth estimation
    Tosic, Ivana
    Berkner, Kathrin
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 441 - 448
  • [46] Multimodal Monocular Dense Depth Estimation with Event-Frame Fusion Using Transformer
    Xiao, Baihui
    Xu, Jingzehua
    Zhang, Zekai
    Xing, Tianyu
    Wang, Jingjing
    Ren, Yong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT II, 2024, 15017 : 419 - 433
  • [47] Monocular Depth and Velocity Estimation Based on Multi-Cue Fusion
    Qi, Chunyang
    Zhao, Hongxiang
    Song, Chuanxue
    Zhang, Naifu
    Song, Sinxin
    Xu, Haigang
    Xiao, Feng
    MACHINES, 2022, 10 (05)
  • [48] Real Time Dense Depth Estimation by Fusing Stereo with Sparse Depth Measurements
    Shivakumar, Shreyas S.
    Mohta, Kartik
    Pfrommer, Bernd
    Kumar, Vijay
    Taylor, Camillo J.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 6482 - 6488
  • [49] A DENSE DEPTH ESTIMATION METHOD USING SUPERPIXELS
    Jin, Feng
    Li, Xuefeng
    2015 12TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2015, : 290 - 294
  • [50] Monocular depth estimation based on dense connections
    Wang, Quande
    Cheng, Kai
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (11): : 75 - 82