Stereo Depth Map Fusion for Robot Navigation

被引:0
|
作者
Haene, Christian [1 ]
Zach, Christopher [1 ]
Lim, Jongwoo [2 ]
Ranganathan, Ananth [2 ]
Pollefeys, Marc [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Zurich, Switzerland
[2] Honda Res Inst, Mountain View, CA USA
来源
2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS | 2011年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method to reconstruct indoor environments from stereo image pairs, suitable for the navigation of robots. To enable a robot to navigate solely using visual cues it receives from a stereo camera, the depth information needs to be extracted from the image pairs and combined into a common representation. The initially determined raw depthmaps are fused into a two level heightmap representation which contains a floor and a ceiling height level. To reduce the noise in the height maps we employ a total variation regularized energy functional. With this 2.5D representation of the scene the computational complexity of the energy optimization is reduced by one dimension in contrast to other fusion techniques that work on the full 3D space such as volumetric fusion. While we show only results for indoor environments the approach can be extended to generate heightmaps for outdoor environments.
引用
收藏
页码:1618 / 1625
页数:8
相关论文
共 50 条
  • [31] Fast Hierarchical depth map computation from stereo
    Kaushik, Vinay
    Lall, Brejesh
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 558 - 561
  • [32] IMPROVED DEPTH MAP THROUGH OPTIMAL AXIS STEREO
    SENGUPTA, S
    SAHASRABUDHE, SC
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1993, 18 : 239 - 249
  • [33] Reliable omnidirectional depth map generation for indoor mobile robot navigation via a single perspective camera
    Luo, Chuanjiang
    Zhu, Feng
    Shi, Zelin
    ADVANCES IN ARTIFICIAL REALITY AND TELE-EXISTENCE, PROCEEDINGS, 2006, 4282 : 1283 - +
  • [34] RGB-D Map for Robot Navigation
    Duchon, Frantisek
    Toelgyessy, Michal
    Chovanec, L'ubos
    Paszto, Peter
    Babinec, Andrej
    Gardian, Pavol
    2014 ELEKTRO, 2014, : 154 - 158
  • [35] Autonomous Exploring Map and Navigation for an Agricultural Robot
    Al-Mashhadani, Zubaidah
    Mainampati, Manasa
    Chandrasekaran, Balasubramaniyan
    2020 3RD INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTS (ICCR 2020), 2020, : 73 - 78
  • [36] Occupancy Map Inpainting for Online Robot Navigation
    Wei, Minghan
    Lee, Daewon
    Isler, Volkan
    Lee, Daniel
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 8551 - 8557
  • [37] Active perception and map learning for robot navigation
    Filliat, D
    Meyer, JA
    FROM ANIMALS TO ANIMATS 6, 2000, : 246 - 255
  • [38] Depth cue fusion for event-based stereo depth estimation
    Ghosh, Dipon Kumar
    Jung, Yong Ju
    INFORMATION FUSION, 2025, 117
  • [39] Indoor Semantic Map Building for Robot Navigation
    Liang, Jing
    Song, Wei
    Shen, Linyong
    Zhang, Yanan
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 794 - 798
  • [40] Robust depth estimation for mobile robot navigation
    Zhong, ZG
    Yi, JQ
    Zhao, DB
    Hong, YP
    Li, XZ
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON INTELLIGENT MECHATRONICS AND AUTOMATION, 2004, : 970 - 975