Logarithmic barrier-augmented Lagrangian function to the optimal power flow problem

被引:28
|
作者
Baptista, EC
Belati, EA
da Costa, GRM [1 ]
机构
[1] USP, BR-13566590 Sao Carlos, SP, Brazil
[2] UNESP, BR-17033360 Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
primal-dual logarithmic barrier; optimization methods; reactive dispatch; nonlinear programming;
D O I
10.1016/j.ijepes.2005.06.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new approach to solve the Optimal Power Flow problem. This approach considers the application of logarithmic barrier method to voltage magnitude and tap-changing transformer variables and the other constraints are treated by augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:528 / 532
页数:5
相关论文
共 50 条
  • [31] FORMULATION OF A CONSTRAINED AUTOMATIC LENS DESIGN PROBLEM BY MEANS OF THE AUGMENTED LAGRANGIAN FUNCTION
    MATSUI, H
    TANAKA, K
    [J]. JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1993, 24 (04): : 173 - 175
  • [32] Solution of Optimal Power Flow Problems using Moment Relaxations Augmented with Objective Function Penalization
    Molzahn, Daniel
    Josz, Cedric
    Hiskens, Ian
    Panciatici, Patrick
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 31 - 38
  • [33] Augmented Lagrangian cone method for multiobjective optimization problems with an application to an optimal control problem
    Upadhayay, Ashutosh
    Ghosh, Debdas
    Ansari, Qamrul Hasan
    Jauny
    [J]. OPTIMIZATION AND ENGINEERING, 2023, 24 (03) : 1633 - 1665
  • [34] Augmented Lagrangian cone method for multiobjective optimization problems with an application to an optimal control problem
    Ashutosh Upadhayay
    Debdas Ghosh
    Qamrul Hasan Ansari
    [J]. Optimization and Engineering, 2023, 24 : 1633 - 1665
  • [35] Coevolutionary Genetic Algorithm Based on the Augmented Lagrangian Function for Solving the Economic Dispatch Problem
    Nepomuceno, L.
    Baptista, E. C.
    Balbo, A. R.
    Soler, E. M.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (10) : 3277 - 3286
  • [36] A learning-augmented approach for AC optimal power flow
    Rahman, Jubeyer
    Feng, Cong
    Zhang, Jie
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 130
  • [37] Local Solutions of the Optimal Power Flow Problem
    Bukhsh, Waqquas A.
    Grothey, Andreas
    McKinnon, Ken I. M.
    Trodden, Paul A.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) : 4780 - 4788
  • [38] A Distributed Approach for the Optimal Power Flow Problem
    Magnusson, Sindri
    Weeraddana, Pradeep Chathuranga
    Fischione, Carlo
    [J]. 2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1940 - 1945
  • [39] Optimal Power Flow as a Polynomial Optimization Problem
    Ghaddar, Bissan
    Marecek, Jakub
    Mevissen, Martin
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (01) : 539 - 546
  • [40] Distributed Algorithms for Optimal Power Flow Problem
    Lam, Albert Y. S.
    Zhang, Baosen
    Tse, David N.
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 430 - 437