Local Solutions of the Optimal Power Flow Problem

被引:159
|
作者
Bukhsh, Waqquas A. [1 ]
Grothey, Andreas [1 ]
McKinnon, Ken I. M. [1 ]
Trodden, Paul A. [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Global optimum; local optima; optimal power flow; OPTIMIZATION; ALGORITHM; SYSTEMS;
D O I
10.1109/TPWRS.2013.2274577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The existence of locally optimal solutions to the AC optimal power flow problem (OPF) has been a question of interest for decades. This paper presents examples of local optima on a variety of test networks including modified versions of common networks. We show that local optima can occur because the feasible region is disconnected and/or because of nonlinearities in the constraints. Standard local optimization techniques are shown to converge to these local optima. The voltage bounds of all the examples in this paper are between +/- 5% and +/- 10% off-nominal. The examples with local optima are available in an online archive (http://www.maths.ed.ac.uk/optenergy/LocalOpt/) and can be used to test local or global optimization techniques for OPF. Finally we use our test examples to illustrate the behavior of a recent semi-definite programming approach that aims to find the global solution of OPF.
引用
收藏
页码:4780 / 4788
页数:9
相关论文
共 50 条
  • [1] Learning to accelerate globally optimal solutions to the AC Optimal Power Flow problem
    Cengil, Fatih
    Nagarajan, Harsha
    Bent, Russell
    Eksioglu, Sandra
    Eksioglu, Burak
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
  • [2] A Sufficient Condition for Global Optimality of Solutions to the Optimal Power Flow Problem
    Molzahn, Daniel K.
    Lesieutre, Bernard C.
    DeMarco, Christopher L.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (02) : 978 - 979
  • [3] OPTIMAL POWER FLOW SOLUTIONS
    DOMMEL, HW
    TINNEY, WF
    [J]. IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1968, PA87 (10): : 1866 - +
  • [4] On the optimal solutions for power flow equations
    Zhou, TS
    Lü, JH
    Chen, LN
    Jing, ZJ
    Tang, Y
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2003, 25 (07) : 533 - 541
  • [5] A Deterministic Method to Identify Multiple Local Extrema for the AC Optimal Power Flow Problem
    Wu, Dan
    Molzahn, Daniel K.
    Lesieutre, Bernard C.
    Dvijotham, Krishnamurthy
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (01) : 654 - 668
  • [6] A Distributed Approach for the Optimal Power Flow Problem
    Magnusson, Sindri
    Weeraddana, Pradeep Chathuranga
    Fischione, Carlo
    [J]. 2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1940 - 1945
  • [7] Optimal Power Flow as a Polynomial Optimization Problem
    Ghaddar, Bissan
    Marecek, Jakub
    Mevissen, Martin
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (01) : 539 - 546
  • [8] Distributed Algorithms for Optimal Power Flow Problem
    Lam, Albert Y. S.
    Zhang, Baosen
    Tse, David N.
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 430 - 437
  • [9] Stochastic Optimal Power Flow Problem with Stability Constraints
    Hamon, Camille
    Perninge, Magnus
    Soder, Lennart
    [J]. 2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [10] Sparse Tableau Relaxation for the Optimal Power Flow Problem
    Park, Byungkwon
    DeMarco, Christopher L.
    [J]. 2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 315 - 323