Online NARMAX model for electron fluxes at GEO

被引:37
|
作者
Boynton, R. J. [1 ]
Balikhin, M. A. [1 ]
Billings, S. A. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Magnetospheric physics; energetic particles trapped; solar wind-magnetosphere interactions; NON-LINEAR SYSTEMS; OUTPUT PARAMETRIC MODELS; OUTER RADIATION BELT; RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; ENERGETIC ELECTRONS; SOLAR-WIND; DIFFUSION-COEFFICIENTS; MAGNETIC STORMS; NEURAL-NETWORK;
D O I
10.5194/angeo-33-405-2015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Multi-input single-output (MISO) nonlinear autoregressive moving average with exogenous inputs (NARMAX) models have been derived to forecast the > 0.8 MeV and > 2 MeV electron fluxes at geostationary Earth orbit (GEO). The NARMAX algorithm is able to identify mathematical model for a wide class of nonlinear systems from input-output data. The models employ solar wind parameters as inputs to provide an estimate of the average electron flux for the following day, i.e. the 1-day forecast. The identified models are shown to provide a reliable forecast for both > 0.8 and > 2 MeV electron fluxes and are capable of providing real-time warnings of when the electron fluxes will be dangerously high for satellite systems. These models, named SNB(3)GEO > 0.8 and > 2 MeV electron flux models, have been implemented online at http://www.ssg.group.shef.ac.uk/USSW/UOSSW.html.
引用
收藏
页码:405 / 411
页数:7
相关论文
共 50 条
  • [1] The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach
    Boynton, R. J.
    Balikhin, M. A.
    Billings, S. A.
    Reeves, G. D.
    Ganushkina, N.
    Gedalin, M.
    Amariutei, O. A.
    Borovsky, J. E.
    Walker, S. N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (04) : 1500 - 1513
  • [2] Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit
    Balikhin, M. A.
    Boynton, R. J.
    Walker, S. N.
    Borovsky, J. E.
    Billings, S. A.
    Wei, H. L.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [3] Study of the energetic electron fluxes at geostationary orbit with a time-varying NARMAX method
    Liu Shuai
    Li Zhi
    Lin Ruilin
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS, AND CONTROL TECHNOLOGY (I4CT), 2015,
  • [4] Identification and analysis of a NARMAX model
    Thouverez, F
    [J]. NEW ADVANCES IN MODAL SYNTHESIS OF LARGE STRUCTURES: NON-LINEAR DAMPED AND NON-DETERMINISTIC CASES, 1997, : 563 - 575
  • [5] Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes
    Pakhotin, I. P.
    Drozdov, A. Y.
    Shprits, Y. Y.
    Boynton, R. J.
    Subbotin, D. A.
    Balikhin, M. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (10) : 8073 - 8086
  • [6] Variational message passing for online polynomial NARMAX identification
    Kouw, Wouter M.
    Podusenko, Albert
    Koudahl, Magnus T.
    Schoukens, Maarten
    [J]. 2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 2755 - 2760
  • [7] MODEL FOR JOVIAN ELECTRON AND PROTON FLUXES
    CORONITI, FV
    KENNEL, CF
    THORNE, RM
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (04): : 446 - &
  • [8] Data derived NARMAX Dst model
    Boynton, R. J.
    Balikhin, M. A.
    Billings, S. A.
    Sharma, A. S.
    Amariutei, O. A.
    [J]. ANNALES GEOPHYSICAE, 2011, 29 (06) : 965 - 971
  • [9] Identification of nonlinear systems using NARMAX model
    Rahrooh, Alireza
    Shepard, Scott
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1198 - E1202
  • [10] NARMAX model identification using a randomised approach
    Leite Retes P.F.
    Aguirre L.A.
    [J]. International Journal of Modelling, Identification and Control, 2019, 31 (03): : 205 - 216