Study of the energetic electron fluxes at geostationary orbit with a time-varying NARMAX method

被引:0
|
作者
Liu Shuai [1 ]
Li Zhi [1 ]
Lin Ruilin [2 ]
机构
[1] Equipment Acad, Dept Space Command, Beijing, Peoples R China
[2] Chinese Acad Sci, NSSC, Beijing, Peoples R China
关键词
High Energetic Electron Flux; NARMAX; Kalman Filter; Nonlinear Modeling; OUTPUT PARAMETRIC MODELS; NON-LINEAR SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Nonlinear Autoregressive Moving Average with eXogenous inputs(NARMAX) approach is briefly introduced. Since its advantage on nonlinear system modeling, this paper focuses on its application for describing the dynamic energetic electron flux(>2MeV) variations at the geostationary orbit. A basic one-step-ahead nonlinear model and a Kalman Filter modified one are built to map the relationship between the electron fluxes and the solar wind and the geomagnetic index. The prediction efficiency reaches up to 79.7%. The validation procedure further confirms that this method is effective and could be helpful in studying the radiation belt.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit
    Balikhin, M. A.
    Boynton, R. J.
    Walker, S. N.
    Borovsky, J. E.
    Billings, S. A.
    Wei, H. L.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [2] A NARMAX Method for the Identification of Time-Varying Joint Stiffness.
    Guarin, Diego L.
    Kearney, Robert E.
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 6518 - 6521
  • [3] The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach
    Boynton, R. J.
    Balikhin, M. A.
    Billings, S. A.
    Reeves, G. D.
    Ganushkina, N.
    Gedalin, M.
    Amariutei, O. A.
    Borovsky, J. E.
    Walker, S. N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (04) : 1500 - 1513
  • [4] Input Parameters for Models of Energetic Electrons Fluxes at the Geostationary Orbit
    V.I.Degtyarev
    G.V.Popov
    S.E.Chudnenko
    [J]. 空间科学学报, 2005, (05) : 424 - 429
  • [5] Responses of geostationary orbit energetic electron fluxes to chorus waves under different geomagnetic conditions
    Zhou XiaoPing
    Xiao FuLiang
    He YiHua
    Yang Chang
    Zhou QingHua
    Zhang ZeLong
    Gao ZhongLei
    Ding YuanHui
    [J]. SCIENCE CHINA-EARTH SCIENCES, 2013, 56 (12) : 2006 - 2014
  • [6] Responses of geostationary orbit energetic electron fluxes to chorus waves under different geomagnetic conditions
    ZHOU XiaoPing
    XIAO FuLiang
    HE YiHua
    YANG Chang
    ZHOU QingHua
    [J]. Science China Earth Sciences, 2013, 56 (12) : 2006 - 2014
  • [7] Responses of geostationary orbit energetic electron fluxes to chorus waves under different geomagnetic conditions
    XiaoPing Zhou
    FuLiang Xiao
    YiHua He
    Chang Yang
    QingHua Zhou
    ZeLong Zhang
    ZhongLei Gao
    YuanHui Ding
    [J]. Science China Earth Sciences, 2013, 56 : 2006 - 2014
  • [8] Electron Fluxes at Geostationary Orbit From GOES MAGED Data
    Sillanpaa, Ilkka
    Ganushkina, N. Yu.
    Dubyagin, S.
    Rodriguez, J. V.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2017, 15 (12): : 1602 - 1614
  • [9] Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test
    Aryan, Homayon
    Boynton, Richard J.
    Walker, Simon N.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (02) : 636 - 641
  • [10] Modeling the Relationship of ≥2 MeV Electron Fluxes at Different Longitudes in Geostationary Orbit by the Machine Learning Method
    Sun, Xiaojing
    Lin, Ruilin
    Liu, Siqing
    He, Xinran
    Shi, Liqin
    Luo, Bingxian
    Zhong, Qiuzhen
    Gong, Jiancun
    [J]. REMOTE SENSING, 2021, 13 (17)