The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach

被引:69
|
作者
Boynton, R. J. [1 ]
Balikhin, M. A. [1 ]
Billings, S. A. [1 ]
Reeves, G. D. [2 ]
Ganushkina, N. [3 ,4 ]
Gedalin, M. [5 ]
Amariutei, O. A. [3 ]
Borovsky, J. E. [6 ]
Walker, S. N. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[4] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[5] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[6] Space Sci Inst, Boulder, CO USA
基金
英国工程与自然科学研究理事会;
关键词
Electron fluxes; NON-LINEAR SYSTEMS; OUTPUT PARAMETRIC MODELS; SOLAR-WIND; RELATIVISTIC ELECTRONS; RADIATION BELT; ENERGETIC ELECTRONS; DIFFUSION-COEFFICIENTS; INNER MAGNETOSPHERE; GEOMAGNETIC STORMS; ACCELERATION;
D O I
10.1002/jgra.50192
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The methodology based on the Error Reduction Ratio (ERR) determines the causal relationship between the input and output for a wide class of nonlinear systems. In the present study, ERR is used to identify the most important solar wind parameters, which control the fluxes of energetic electrons at geosynchronous orbit. The results show that for lower energies, the fluxes are indeed controlled by the solar wind velocity, as was assumed before. For the lowest energy range studied here (24.1keV), the solar wind velocity of the current day is the most important control parameter for the current day's electron flux. As the energy increases, the solar wind velocity of the previous day becomes the most important factor. For the higher energy electrons (around 1MeV), the solar wind velocity registered 2days in the past is the most important controlling parameter. Such a dependence can, perhaps, be explained by either local acceleration processes due to the interaction with plasma waves or by radial diffusion if lower energy electrons possess higher mobility. However, in the case of even higher energies (2.0MeV), the solar wind density replaces the velocity as the key control parameter. Such a dependence could be a result of solar wind density influence on the dynamics of various waves and pulsations that affect acceleration and loss of relativistic electrons. The study also shows that statistically the variations of daily high energy electron fluxes show little dependence on the daily averaged Bz, daily time duration of the southward IMF, and daily integral Bsdt (where Bs is the southward component of IMF).
引用
收藏
页码:1500 / 1513
页数:14
相关论文
共 50 条
  • [1] Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit
    Balikhin, M. A.
    Boynton, R. J.
    Walker, S. N.
    Borovsky, J. E.
    Billings, S. A.
    Wei, H. L.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [2] Study of the energetic electron fluxes at geostationary orbit with a time-varying NARMAX method
    Liu Shuai
    Li Zhi
    Lin Ruilin
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS, AND CONTROL TECHNOLOGY (I4CT), 2015,
  • [3] An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit
    Denton, M. H.
    Thomsen, M. F.
    Jordanova, V. K.
    Henderson, M. G.
    Borovsky, J. E.
    Denton, J. S.
    Pitchford, D.
    Hartley, D. P.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2015, 13 (04): : 233 - 249
  • [4] Extreme relativistic electron fluxes at geosynchronous orbit: Analysis of GOES E > 2 MeV electrons
    Meredith, Nigel P.
    Horne, Richard B.
    Isles, John D.
    Rodriguez, Juan V.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2015, 13 (03): : 170 - 184
  • [5] Statistical study of long-term dropouts of relativistic electron fluxes in the geosynchronous orbit
    Wu Han
    Chen Tao
    Kalegaev, V. V.
    Panasyuk, M., I
    Duan SuPing
    He ZhaoHai
    Li RenKang
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2021, 64 (06): : 1842 - 1856
  • [6] Online NARMAX model for electron fluxes at GEO
    Boynton, R. J.
    Balikhin, M. A.
    Billings, S. A.
    [J]. ANNALES GEOPHYSICAE, 2015, 33 (03) : 405 - 411
  • [7] Particle tracing modeling of ion fluxes at geosynchronous orbit
    Brito, Thiago V.
    Woodroffe, Jesse
    Jordanova, Vania K.
    Henderson, Michael
    Birn, Joachim
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2018, 177 : 131 - 140
  • [8] ENERGETIC ELECTRON COMPONENTS AT GEOSYNCHRONOUS ORBIT
    CAYTON, TE
    BELIAN, RD
    GARY, SP
    FRITZ, TA
    BAKER, DN
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1989, 16 (02) : 147 - 150
  • [9] The Intense Substorm Incidence in Response to Interplanetary Shock Impacts and Influence on Energetic Electron Fluxes at Geosynchronous Orbit
    Ma, X-H
    Zong, Q-G
    Liu, Ying
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (05) : 3210 - 3221
  • [10] An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions
    Denton, M. H.
    Henderson, M. G.
    Jordanova, V. K.
    Thomsen, M. F.
    Borovsky, J. E.
    Woodroffe, J.
    Hartley, D. P.
    Pitchford, D.
    [J]. SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2016, 14 (07): : 511 - 523