Lattice models for granular-like velocity fields: finite-size effects

被引:8
|
作者
Plata, C. A. [1 ]
Manacorda, A. [2 ]
Lasanta, A. [2 ,3 ,4 ]
Puglisi, A. [2 ,3 ]
Prados, A. [1 ]
机构
[1] Univ Seville, Fis Teor, Apartado Correos 1065, E-41080 Seville, Spain
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[3] Sapienza Univ Roma, CNR ISC, Ple A Moro 2, I-00185 Rome, Italy
[4] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
关键词
correlation functions; fluctuation phenomena; Kinetic theory of gases and liquids; finite-size scaling; STATISTICS;
D O I
10.1088/1742-5468/2016/09/093203
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Long-range spatial correlations in the velocity and energy fields of a granular fluid are discussed in the framework of a 1d lattice model. The dynamics of the velocity field occurs through nearest-neighbour inelastic collisions that conserve momentum but dissipate energy. A set of equations for the fluctuating hydrodynamics of the velocity and energy mesoscopic fields give a first approximation for (i) the velocity structure factor and (ii) the finite-size correction to the Ha. law, both in the homogeneous cooling regime. At a more refined level, we have derived the equations for the two-site velocity correlations and the total energy fluctuations. First, we seek a perturbative solution thereof, in powers of the inverse of system size. On the one hand, when scaled with the granular temperature, the velocity correlations tend to a stationary value in the long time limit. On the other hand, the scaled standard deviation of the total energy diverges, that is, the system shows multiscaling. Second, we find an exact solution for the velocity correlations in terms of the spectrum of eigenvalues of a certain matrix. The results of numerical simulations of the microscopic model confirm our theoretical results, including the above described multiscaling phenomenon.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] FINITE-SIZE EFFECTS AND CAPILLARY WAVES IN SOLID-ON-SOLID MODELS
    KOOIMAN, A
    VANLEEUWEN, JMJ
    ZIA, RKP
    PHYSICA A, 1990, 170 (01): : 124 - 142
  • [42] Multipolar Lattice Resonances in Plasmonic Finite-Size Metasurfaces
    Kostyukov, Artem S.
    Rasskazov, Ilia L.
    Gerasimov, Valeriy S.
    Polyutov, Sergey P.
    Karpov, Sergey, V
    Ershov, Alexander E.
    PHOTONICS, 2021, 8 (04)
  • [43] Molecular finite-size effects in stochastic models of equilibrium chemical systems
    Cianci, Claudia
    Smith, Stephen
    Grima, Ramon
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (08):
  • [44] FINITE-SIZE EFFECT FOR HADRON MASSES IN LATTICE QCD
    FUKUGITA, M
    MINO, H
    OKAWA, M
    PARISI, G
    UKAWA, A
    PHYSICS LETTERS B, 1992, 294 (3-4) : 380 - 384
  • [45] FINITE-SIZE EFFECT IN LATTICE QCD HADRON SPECTROSCOPY
    FUKUGITA, M
    MINO, H
    OKAWA, M
    UKAWA, A
    PHYSICAL REVIEW LETTERS, 1992, 68 (06) : 761 - 764
  • [46] FINITE-SIZE EFFECTS IN NEUTRON DETECTORS
    WATSON, JW
    GRAVES, RG
    NUCLEAR INSTRUMENTS & METHODS, 1974, 117 (02): : 541 - 549
  • [47] Finite-size effects in a supercooled liquid
    Doliwa, B
    Heuer, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (11) : S849 - S858
  • [48] Finite-size effects in vortex localization
    Shnerb, N. M.
    Physical Review B: Condensed Matter, 57 (14):
  • [49] FINITE-SIZE EFFECTS ON BAG THERMODYNAMICS
    BHADURI, RK
    DEY, J
    SRIVASTAVA, MK
    PHYSICAL REVIEW D, 1985, 31 (07): : 1765 - 1767
  • [50] Is finite-size scaling universal for Ising models?
    Muller, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (04): : 585 - 589