Lattice models for granular-like velocity fields: finite-size effects

被引:8
|
作者
Plata, C. A. [1 ]
Manacorda, A. [2 ]
Lasanta, A. [2 ,3 ,4 ]
Puglisi, A. [2 ,3 ]
Prados, A. [1 ]
机构
[1] Univ Seville, Fis Teor, Apartado Correos 1065, E-41080 Seville, Spain
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[3] Sapienza Univ Roma, CNR ISC, Ple A Moro 2, I-00185 Rome, Italy
[4] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
关键词
correlation functions; fluctuation phenomena; Kinetic theory of gases and liquids; finite-size scaling; STATISTICS;
D O I
10.1088/1742-5468/2016/09/093203
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Long-range spatial correlations in the velocity and energy fields of a granular fluid are discussed in the framework of a 1d lattice model. The dynamics of the velocity field occurs through nearest-neighbour inelastic collisions that conserve momentum but dissipate energy. A set of equations for the fluctuating hydrodynamics of the velocity and energy mesoscopic fields give a first approximation for (i) the velocity structure factor and (ii) the finite-size correction to the Ha. law, both in the homogeneous cooling regime. At a more refined level, we have derived the equations for the two-site velocity correlations and the total energy fluctuations. First, we seek a perturbative solution thereof, in powers of the inverse of system size. On the one hand, when scaled with the granular temperature, the velocity correlations tend to a stationary value in the long time limit. On the other hand, the scaled standard deviation of the total energy diverges, that is, the system shows multiscaling. Second, we find an exact solution for the velocity correlations in terms of the spectrum of eigenvalues of a certain matrix. The results of numerical simulations of the microscopic model confirm our theoretical results, including the above described multiscaling phenomenon.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] FINITE-SIZE EFFECTS IN A SANDPILE
    LIU, CH
    JAEGER, HM
    NAGEL, SR
    PHYSICAL REVIEW A, 1991, 43 (12): : 7091 - 7092
  • [32] FINITE-SIZE EFFECTS ON MULTIFRACTALS
    KAUFMANN, Z
    PHYSICAL REVIEW A, 1991, 44 (10): : 6923 - 6925
  • [33] Finite-Size Analysis of the Collapse of Dry Granular Columns
    Man, Teng
    Huppert, Herbert E.
    Li, Ling
    Galindo-Torres, Sergio A.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (24)
  • [34] FINITE-SIZE SCALING FOR POTTS MODELS
    BORGS, C
    KOTECKY, R
    MIRACLESOLE, S
    JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) : 529 - 551
  • [35] Finite-size effects in the Z2 spin liquid on the kagome lattice
    Ju, Hyejin
    Balents, Leon
    PHYSICAL REVIEW B, 2013, 87 (19)
  • [36] POLYAKOV LOOPS AND FINITE-SIZE EFFECTS OF HADRON MASSES IN FULL LATTICE QCD
    ANTONELLI, S
    BELLACCI, M
    FERNANDEZ, LA
    MUNOZSUDUPE, A
    RUIZLORENZO, JJ
    SARNO, R
    TARANCON, A
    BARTOLONI, A
    BATTISTA, A
    CABIBBO, N
    CABASINO, S
    PANIZZI, E
    PAOLUCCI, PS
    TODESCO, GM
    TORELLI, M
    TRIPICCIONE, R
    VICINI, P
    PHYSICS LETTERS B, 1995, 345 (01) : 49 - 54
  • [37] FINITE-SIZE EFFECTS DUE TO GOLDSTONE PARTICLES IN LATTICE GAUGE-THEORY
    JOLICOEUR, T
    MOREL, A
    NUCLEAR PHYSICS B, 1985, 262 (04) : 627 - 643
  • [38] Finite-size effects of lattice structure and soft mode in bismuth titanate nanocrystals
    Zhu, K. R.
    Zhang, M. S.
    Deng, Y.
    Zhou, J. X.
    Yin, Z.
    SOLID STATE COMMUNICATIONS, 2008, 145 (9-10) : 456 - 460
  • [39] Lattice φ4 theory of finite-size effects above the upper critical dimension
    Chen, XS
    Dohm, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (07): : 1073 - 1105
  • [40] DETERMINATION OF MULTICRITICAL POINTS FOR LATTICE-GAS MODELS BY FINITE-SIZE SCALING OF THE SUSCEPTIBILITY
    RIKVOLD, PA
    PHYSICAL REVIEW B, 1985, 32 (07): : 4756 - 4759