Lattice models for granular-like velocity fields: finite-size effects

被引:8
|
作者
Plata, C. A. [1 ]
Manacorda, A. [2 ]
Lasanta, A. [2 ,3 ,4 ]
Puglisi, A. [2 ,3 ]
Prados, A. [1 ]
机构
[1] Univ Seville, Fis Teor, Apartado Correos 1065, E-41080 Seville, Spain
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[3] Sapienza Univ Roma, CNR ISC, Ple A Moro 2, I-00185 Rome, Italy
[4] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
关键词
correlation functions; fluctuation phenomena; Kinetic theory of gases and liquids; finite-size scaling; STATISTICS;
D O I
10.1088/1742-5468/2016/09/093203
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Long-range spatial correlations in the velocity and energy fields of a granular fluid are discussed in the framework of a 1d lattice model. The dynamics of the velocity field occurs through nearest-neighbour inelastic collisions that conserve momentum but dissipate energy. A set of equations for the fluctuating hydrodynamics of the velocity and energy mesoscopic fields give a first approximation for (i) the velocity structure factor and (ii) the finite-size correction to the Ha. law, both in the homogeneous cooling regime. At a more refined level, we have derived the equations for the two-site velocity correlations and the total energy fluctuations. First, we seek a perturbative solution thereof, in powers of the inverse of system size. On the one hand, when scaled with the granular temperature, the velocity correlations tend to a stationary value in the long time limit. On the other hand, the scaled standard deviation of the total energy diverges, that is, the system shows multiscaling. Second, we find an exact solution for the velocity correlations in terms of the spectrum of eigenvalues of a certain matrix. The results of numerical simulations of the microscopic model confirm our theoretical results, including the above described multiscaling phenomenon.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Lattice Models for Granular-Like Velocity Fields
    Alessandro, Manacorda
    6TH WARSAW SCHOOL OF STATISTICAL PHYSICS, 2017, : 110 - 111
  • [2] Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description
    Manacorda, Alessandro
    Plata, Carlos A.
    Lasanta, Antonio
    Puglisi, Andrea
    Prados, Antonio
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (04) : 810 - 841
  • [3] Lattice Models for Granular-Like Velocity Fields: Hydrodynamic Description
    Alessandro Manacorda
    Carlos A. Plata
    Antonio Lasanta
    Andrea Puglisi
    Antonio Prados
    Journal of Statistical Physics, 2016, 164 : 810 - 841
  • [4] Finite-size effects on a lattice calculation
    Campos, Rafael G.
    Tututi, Eduardo S.
    PHYSICS LETTERS A, 2008, 372 (45) : 6717 - 6720
  • [5] FINITE-SIZE EFFECTS FOR LATTICE GLUEBALL MASSES
    DEGRAND, TA
    PETERSON, C
    PHYSICAL REVIEW D, 1986, 34 (10): : 3180 - 3185
  • [6] Correlation Functions and Finite-Size Effects in Granular Media
    Kaupuzs, Jevgenijs
    TRAFFIC AND GRANULAR FLOW '13, 2015, : 629 - 635
  • [7] BOUNDARY AND FINITE-SIZE EFFECTS IN LATTICE MODELS FOR DYNAMICAL PHASE-TRANSITIONS
    BENAVRAHAM, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15): : 3725 - 3732
  • [8] FREE FERMION PROPAGATORS AND LATTICE FINITE-SIZE EFFECTS
    CARPENTER, DB
    BAILLIE, CF
    NUCLEAR PHYSICS B, 1985, 260 (01) : 103 - 112
  • [9] FINITE-SIZE EFFECTS AND BOUNDS FOR PERCEPTRON MODELS
    DERRIDA, B
    GRIFFITHS, RB
    PRUGELBENNETT, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20): : 4907 - 4940
  • [10] Finite-size scaling of branch-points in lattice models
    Williams, NO
    Lavis, DA
    PHYSICS LETTERS A, 1996, 217 (4-5) : 275 - 279