Expectation maximization estimation for a class of input nonlinear state space systems by using the Kalman smoother

被引:20
|
作者
Ma, Junxia [1 ,2 ]
Wu, Ouyang [2 ]
Huang, Biao [2 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
来源
SIGNAL PROCESSING | 2018年 / 145卷
基金
中国国家自然科学基金;
关键词
Expectation maximization; Parameter estimation; Iterative identification; Kalman smoother; Hammerstein models; ITERATIVE IDENTIFICATION; PARAMETER-ESTIMATION; ALGORITHM; LIKELIHOOD;
D O I
10.1016/j.sigpro.2017.12.019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The parameter estimation for a class of single-input single-output (SISO) Hammerstein state space systems is considered in this paper. The nonlinear block in the discussed system is represented by a polynomial in the input signal with unknown coefficients. By applying the over-parameterization method, the SISO Hammerstein state space model is transformed to a multiple-input single-output linear state space model. The unknown system states and parameters are estimated interactively. The Kalman smoother is used to calculate the state estimates. Under the principle of the expectation maximization, an identification algorithm is derived to realize the joint estimation for the unknown model parameters and states. Although the over-parameterization method increases the number of redundant parameters, it simplifies the identification problem of the input nonlinear state space model in this paper. A numerical simulation example and an experiment carried out on the multitank system are provided to demonstrate that the derived identification method is effective. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:295 / 303
页数:9
相关论文
共 50 条
  • [41] Constrained State Estimation for Nonlinear Systems with Unknown Input
    Zhen Luo
    Huajing Fang
    Yuanhao Luo
    [J]. Circuits, Systems, and Signal Processing, 2013, 32 : 2199 - 2211
  • [42] FE-aided Kalman Filter for nonlinear state estimation with unknown input
    Caglio, Luigi
    Stang, Henrik
    Brincker, Rune
    Katsanos, Evangelos
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [43] Online expectation-maximization type algorithms for parameter estimation in general state space models
    Andrieu, C
    Doucet, A
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 69 - 72
  • [44] Exogenous input and state estimation for a class of nonlinear dynamic systems in the presence of the unknown but bounded disturbances
    Alirezapouri M.A.
    Vali A.R.
    Khaloozadeh H.
    Arvan M.R.
    [J]. International Journal of Dynamics and Control, 2019, 7 (01): : 226 - 240
  • [45] An Improved Fuzzy Kalman Filter for State Estimation of Nonlinear Systems
    Zhou, Zhi-Jie
    Hu, Chang-Hua
    Zhang, Bang-Cheng
    Chen, Liang
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [46] Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle
    Wang, Xuehai
    Ding, Feng
    [J]. SIGNAL PROCESSING, 2015, 117 : 208 - 218
  • [47] A novel aerodynamic parameter estimation algorithm via sigma point Rauch-Tung-Striebel smoother using expectation maximization
    Zhang, Wei
    Wang, Hongwei
    Liu, Yilei
    Zuo, Junyi
    Wang, Heping
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 3): : S6795 - S6806
  • [48] Multichannel InSAR Phase Unwrapping Using Nonlinear Kalman Smoother
    Chirico, Davide
    Schirinzi, Gilda
    [J]. 2012 9TH EUROPEAN RADAR CONFERENCE (EURAD), 2012, : 282 - 285
  • [49] Dynamic state estimation in nonlinear stiff systems using implicit state space models
    Nisha, A. S.
    Manohar, C. S.
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (07):
  • [50] Trajectory generation for a class of nonlinear systems with input and state constraints
    Kim, SK
    Tilbury, DM
    [J]. PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 4908 - 4913