Expectation maximization estimation for a class of input nonlinear state space systems by using the Kalman smoother

被引:20
|
作者
Ma, Junxia [1 ,2 ]
Wu, Ouyang [2 ]
Huang, Biao [2 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
基金
中国国家自然科学基金;
关键词
Expectation maximization; Parameter estimation; Iterative identification; Kalman smoother; Hammerstein models; ITERATIVE IDENTIFICATION; PARAMETER-ESTIMATION; ALGORITHM; LIKELIHOOD;
D O I
10.1016/j.sigpro.2017.12.019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The parameter estimation for a class of single-input single-output (SISO) Hammerstein state space systems is considered in this paper. The nonlinear block in the discussed system is represented by a polynomial in the input signal with unknown coefficients. By applying the over-parameterization method, the SISO Hammerstein state space model is transformed to a multiple-input single-output linear state space model. The unknown system states and parameters are estimated interactively. The Kalman smoother is used to calculate the state estimates. Under the principle of the expectation maximization, an identification algorithm is derived to realize the joint estimation for the unknown model parameters and states. Although the over-parameterization method increases the number of redundant parameters, it simplifies the identification problem of the input nonlinear state space model in this paper. A numerical simulation example and an experiment carried out on the multitank system are provided to demonstrate that the derived identification method is effective. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:295 / 303
页数:9
相关论文
共 50 条
  • [21] STATE ESTIMATION & SELF-LOCALIZATION USING DISTRIBUTED KALMAN FILTER & RECURSIVE EXPECTATION MAXIMIZATION ALGORITHM IN SENSOR NETWORKS
    Amirarfaei, Faeghe
    Ghafoorifard, Hasan
    Menhaj, Mohamad B.
    [J]. EUROCON 2009: INTERNATIONAL IEEE CONFERENCE DEVOTED TO THE 150 ANNIVERSARY OF ALEXANDER S. POPOV, VOLS 1- 4, PROCEEDINGS, 2009, : 1823 - 1830
  • [22] State and input estimation for a class of uncertain systems
    Corless, M
    Tu, J
    [J]. AUTOMATICA, 1998, 34 (06) : 757 - 764
  • [23] STATE ESTIMATION FOR A CLASS OF NONLINEAR SYSTEMS
    Schwaller, Benoit
    Ensminger, Denis
    Dresp-Langley, Birgitta
    Ragot, Jose
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (02) : 383 - 394
  • [24] Maximum Likelihood recursive state estimation using the Expectation Maximization algorithm
    Ramadan, Mohammad S.
    Bitmead, Robert R.
    [J]. AUTOMATICA, 2022, 144
  • [25] Parameter Estimation of Aircraft Dynamics via Unscented Smoother with Expectation-Maximization Algorithm
    Yokoyama, Nobuhiro
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2011, 34 (02) : 426 - 436
  • [26] State and unknown input simultaneous estimation for a class of nonlinear systems with time-delay
    Fuqiang You
    Hui Li
    Fuli Wang
    [J]. Nonlinear Dynamics, 2016, 83 : 1653 - 1671
  • [27] State Estimation of Nonlinear Systems Using Novel Adaptive Unscented Kalman Filter
    Jargani, Lotfollah
    Shahbazian, Mehdi
    Salahshoor, Karim
    Fathabadi, Vahid
    [J]. ICET: 2009 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2009, : 124 - 129
  • [28] State and unknown input simultaneous estimation for a class of nonlinear systems with time-delay
    You, Fuqiang
    Li, Hui
    Wang, Fuli
    [J]. NONLINEAR DYNAMICS, 2016, 83 (03) : 1653 - 1671
  • [29] Online state and unknown inputs estimation for nonlinear systems with particle filter based recursive expectation-maximization algorithm
    Liu, Zhuangyu
    Zhao, Shunyi
    Wan, Haiying
    Luan, Xiaoli
    Liu, Fei
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (13) : 8768 - 8784
  • [30] INSAR PHASE UNWRAPPING USING NONLINEAR KALMAN SMOOTHER
    Chirico, Davide
    Schirinzi, Gilda
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5610 - 5613