Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach

被引:67
|
作者
Pandarachalil, Rafeeque [1 ]
Sendhilkumar, Selvaraju [2 ]
Mahalakshmi, G. S. [3 ]
机构
[1] Govt Coll Engn Kannur, Dept Comp Sci & Engn, Kannur, India
[2] Anna Univ, Dept Informat Sci & Technol, Chennai 600025, Tamil Nadu, India
[3] Anna Univ, Dept Comp Sci & Engn, Chennai 600025, Tamil Nadu, India
关键词
Sentiment analysis; Twitter; SentiWordNet; SenticNet; Parallel [!text type='python']python[!/text; NETWORKS;
D O I
10.1007/s12559-014-9310-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons-SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good -score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores.
引用
收藏
页码:254 / 262
页数:9
相关论文
共 50 条
  • [41] A novel approach to generate a large scale of supervised data for short text sentiment analysis
    Sun, Xiao
    He, Jiajin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (9-10) : 5439 - 5459
  • [42] A System for Extracting Sentiment from Large-Scale Arabic Social Data
    Wang, Hao
    Bommireddipalli, Vijay R.
    Hanafy, Ayman
    Bahgat, Mohamed
    Noeman, Sara
    Emam, Ossama S.
    [J]. 2015 FIRST INTERNATIONAL CONFERENCE ON ARABIC COMPUTATIONAL LINGUISTICS (ACLING 2015): ADVANCES IN ARABIC COMPUTATIONAL LINGUISTICS, 2015, : 71 - 77
  • [43] Large-Scale Web Data Analysis
    Leskovec, Jure
    [J]. IEEE INTELLIGENT SYSTEMS, 2011, 26 (01) : 11 - 11
  • [44] Large-Scale Visual Data Analysis
    Johnson, Chris
    [J]. 2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012, : 1 - 1
  • [45] Large-Scale Unsupervised Semantic Segmentation
    Gao, Shanghua
    Li, Zhong-Yu
    Yang, Ming-Hsuan
    Cheng, Ming-Ming
    Han, Junwei
    Torr, Philip
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7457 - 7476
  • [46] Large-Scale Unsupervised Object Discovery
    Vo, Huy V.
    Sizikova, Elena
    Schmid, Cordelia
    Perez, Patrick
    Ponce, Jean
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [47] Large-scale data collection: a coordinated approach
    Cheng, WC
    Chou, CF
    Golubchik, L
    Khuller, S
    Wan, YC
    [J]. IEEE INFOCOM 2003: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2003, : 218 - 228
  • [48] Intelligent approach for large-scale data mining
    Fouad, Khaled M.
    El-Bably, Doaa L.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2020, 63 (1-2) : 93 - 113
  • [49] A NETWORK APPROACH TO LARGE-SCALE EXPERIMENTAL-DATA ACQUISITION AND ANALYSIS
    CORBOULD, MA
    HOW, JA
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1984, 32 (03) : 231 - 237
  • [50] An Unsupervised Approach to Infer Quality of Service for Large-Scale Wireless Networking
    Reis, Lucio Henrik A.
    Magalhaes, Luiz Claudio S.
    de Medeiros, Dianne Scherly, V
    Mattos, Diogo M. F.
    [J]. JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2020, 28 (04) : 1228 - 1247