Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach

被引:67
|
作者
Pandarachalil, Rafeeque [1 ]
Sendhilkumar, Selvaraju [2 ]
Mahalakshmi, G. S. [3 ]
机构
[1] Govt Coll Engn Kannur, Dept Comp Sci & Engn, Kannur, India
[2] Anna Univ, Dept Informat Sci & Technol, Chennai 600025, Tamil Nadu, India
[3] Anna Univ, Dept Comp Sci & Engn, Chennai 600025, Tamil Nadu, India
关键词
Sentiment analysis; Twitter; SentiWordNet; SenticNet; Parallel [!text type='python']python[!/text; NETWORKS;
D O I
10.1007/s12559-014-9310-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons-SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good -score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores.
引用
收藏
页码:254 / 262
页数:9
相关论文
共 50 条
  • [21] Deep associative learning approach for bio-medical sentiment analysis utilizing unsupervised representation from large-scale patients’ narratives
    Grissette H.
    Nfaoui E.H.
    [J]. Personal and Ubiquitous Computing, 2023, 27 (06) : 2055 - 2069
  • [22] Dynamic Large Scale Data on Twitter using Sentiment Analysis and Topic Modeling Case Study: Uber
    Alamsyah, Andry
    Rizkika, Wirawan
    Nugroho, Ditya Dwi Adhi
    Renate, Farhan
    Saadah, Siti
    [J]. 2018 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT), 2018, : 254 - 258
  • [23] Understanding Desire to Touch Using Large-scale Twitter Data
    Ujitoko, Yusuke
    [J]. NTT Technical Review, 2023, 21 (01): : 30 - 33
  • [24] Nonparametric Data Reduction Approach for Large-Scale Survival Data Analysis
    Sadeghzadeh, Keivan
    Fard, Nasser
    [J]. 2015 61ST ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2015), 2015,
  • [25] Deep Learning-Based Sentimental Analysis for Large-Scale Imbalanced Twitter Data
    Jamal, Nasir
    Chen, Xianqiao
    Aldabbas, Hamza
    [J]. FUTURE INTERNET, 2019, 11 (09)
  • [26] MMSVC: An Efficient Unsupervised Learning Approach for Large-Scale Datasets
    Gu, Hong
    Zhao, Guangzhou
    Zhang, Jianliang
    [J]. LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, 2010, 6330 : 1 - 9
  • [27] MMSVC: An efficient unsupervised learning approach for large-scale datasets
    Gu, Hong
    Zhao, Guangzhou
    Zhang, Jianliang
    [J]. NEUROCOMPUTING, 2012, 98 : 114 - 122
  • [28] Sentiment Analysis of Real Time Twitter data using Big data Approach
    Rodrigues, Anisha P.
    Rao, Archana
    Chiplunkar, Niranjan N.
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL SYSTEMS AND INFORMATION TECHNOLOGY FOR SUSTAINABLE SOLUTION (CSITSS-2017), 2017, : 175 - 180
  • [29] A new big data approach for topic classification and sentiment analysis of Twitter data
    Rodrigues, Anisha P.
    Chiplunkar, Niranjan N.
    [J]. EVOLUTIONARY INTELLIGENCE, 2022, 15 (02) : 877 - 887
  • [30] A new big data approach for topic classification and sentiment analysis of Twitter data
    Anisha P. Rodrigues
    Niranjan N. Chiplunkar
    [J]. Evolutionary Intelligence, 2022, 15 : 877 - 887