Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach

被引:67
|
作者
Pandarachalil, Rafeeque [1 ]
Sendhilkumar, Selvaraju [2 ]
Mahalakshmi, G. S. [3 ]
机构
[1] Govt Coll Engn Kannur, Dept Comp Sci & Engn, Kannur, India
[2] Anna Univ, Dept Informat Sci & Technol, Chennai 600025, Tamil Nadu, India
[3] Anna Univ, Dept Comp Sci & Engn, Chennai 600025, Tamil Nadu, India
关键词
Sentiment analysis; Twitter; SentiWordNet; SenticNet; Parallel [!text type='python']python[!/text; NETWORKS;
D O I
10.1007/s12559-014-9310-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Millions of tweets are generated each day on multifarious issues. Topical diversity in content demands domain-independent solutions for analysing twitter sentiments. Scalability is another issue when dealing with huge amount of tweets. This paper presents an unsupervised method for analysing tweet sentiments. Polarity of tweets is evaluated by using three sentiment lexicons-SenticNet, SentiWordNet and SentislangNet. SentislangNet is a sentiment lexicon built from SenticNet and SentiWordNet for slangs and acronyms. Experimental results show fairly good -score. The method is implemented and tested in parallel python framework and is shown to scale well with large volume of data on multiple cores.
引用
收藏
页码:254 / 262
页数:9
相关论文
共 50 条
  • [1] Twitter Sentiment Analysis for Large-Scale Data: An Unsupervised Approach
    Rafeeque Pandarachalil
    Selvaraju Sendhilkumar
    G. S. Mahalakshmi
    [J]. Cognitive Computation, 2015, 7 : 254 - 262
  • [2] COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis
    Naseem, Usman
    Razzak, Imran
    Khushi, Matloob
    Eklund, Peter W.
    Kim, Jinman
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2021, 8 (04): : 1003 - 1015
  • [3] Unsupervised Semantic Approach of Aspect-Based Sentiment Analysis for Large-Scale User Reviews
    Al-Ghuribi, Sumaia Mohammed
    Mohd Noah, Shahrul Azman
    Tiun, Sabrina
    [J]. IEEE ACCESS, 2020, 8 : 218592 - 218613
  • [4] Large scale and parallel sentiment analysis based on Label Propagation in Twitter Data
    Yang, Yibing
    Shafiq, M. Omair
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 1791 - 1798
  • [5] Sentiment Analysis of Twitter Data: A Hybrid Approach
    Srivastava, Ankit
    Singh, Vijendra
    Drall, Gurdeep Singh
    [J]. INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2019, 14 (02) : 1 - 16
  • [6] AraSenTi: Large-Scale Twitter-Specific Arabic Sentiment Lexicons
    Al-Twairesh, Nora
    Al-Khalifa, Hend
    Al-Salman, AbdulMalik
    [J]. PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2016, : 697 - 705
  • [7] Fast Unsupervised Projection for Large-Scale Data
    Wang, Jingyu
    Wang, Lin
    Nie, Feiping
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3634 - 3644
  • [8] Negativity spreads faster: A large-scale multilingual twitter analysis on the role of sentiment in political communication
    Antypas, Dimosthenis
    Preece, Alun
    Camacho-Collados, Jose
    [J]. ONLINE SOCIAL NETWORKS AND MEDIA, 2023, 33
  • [9] Probabilistic unsupervised classification for large-scale analysis of spectral imaging data
    Paradis, Emmanuel
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 107
  • [10] A Topic based Approach for Sentiment Analysis on Twitter Data
    Ficamos, Pierre
    Liu, Yan
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (12) : 201 - 205