Binding numbers for fractional (a, b, k)-critical covered graphs

被引:0
|
作者
Zhou, Sizhong [1 ]
Liu, Hongxia [2 ]
Xu, Yang [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Mengxi Rd 2, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[3] Qingdao Agr Univ, Dept Math, Qingdao 266109, Shandong, Peoples R China
关键词
graph; binding number; fractional; a; b; -factor; b]-covered graph; (a; k)-critical covered graph; ORTHOGONAL FACTORIZATIONS; TOUGHNESS CONDITION; (G; (K;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A graph G is said to be fractional (a, b, k)-critical covered if after deleting any k vertices of G, the remaining graph of G is fractional [a, b]-covered. In this article, we gain a binding number condition for a graph to be fractional (a,b,k)-critical covered, which is an improvement and extension of Yuan and Hao's previous result [Y. Yuan and R. Hao, Neighborhood union conditions for fractional [a, b]-covered graphs, Bull. Malays. Math. Sci. Soc., http s://doi.org/10.1007/s40840-018-0669-y, in press].
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [31] Notes on fractional k-covered graphs
    Zhou, Sizhong
    Xu, Yang
    World Academy of Science, Engineering and Technology, 2010, 67 : 301 - 303
  • [32] A note on fractional ID-[a, b]-factor-critical covered graphs
    Zhou, Sizhong
    Liu, Hongxia
    Xu, Yang
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 511 - 516
  • [33] Degree Conditions for Graphs to Be Fractional k-Covered Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2015, 118 : 135 - 142
  • [34] Binding number conditions for (a,b,k)-critical graphs
    Zhou, Sizhong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (01) : 53 - 57
  • [35] A neighborhood condition for all fractional (a, b, k)-critical graphs
    Jiang, Jiashang
    ARS COMBINATORIA, 2019, 142 : 55 - 63
  • [36] A degree condition for fractional [a, b]-covered graphs
    Yuan, Yuan
    Hao, Rong-Xia
    INFORMATION PROCESSING LETTERS, 2019, 143 : 20 - 23
  • [37] REMARKS ON FRACTIONAL ID-[a,b]-FACTOR-CRITICAL COVERED NETWORK GRAPHS
    Wang, Sufang
    Zhang, Wei
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2021, 22 (03): : 209 - 216
  • [38] A sufficient condition for fractional ID-[a, b]-factor-critical covered graphs
    Jiang, Jiashang
    UTILITAS MATHEMATICA, 2020, 114 : 173 - 179
  • [39] Binding number and minimum degree for (a, b, k)-critical graphs
    Zhou, Sizhong
    Duan, Ziming
    UTILITAS MATHEMATICA, 2012, 88 : 309 - 315
  • [40] INDEPENDENCE NUMBER, CONNECTIVITY AND ALL FRACTIONAL (a, b, k)-CRITICAL GRAPHS
    Yuan, Yuan
    Hao, Rong-Xia
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 183 - 190