Transient Structures and Possible Limits of Data Recording in Phase-Change Materials

被引:42
|
作者
Hu, Jianbo [1 ]
Vanacore, Giovanni M. [1 ]
Yang, Zhe
Miao, Xiangshui
Zewail, Ahmed H. [1 ]
机构
[1] CALTECH, Arthur Amos Noyes Lab Chem Phys, Phys Biol Ctr Ultrafast Sci & Technol, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
phase-change materials; ultrafast electron diffraction; phase transitions; structural dynamics; germanium telluride; Ge-Sb-Te alloy; ULTRAFAST ELECTRON-DIFFRACTION; LOCAL-STRUCTURE; DYNAMICS; GETE; CRYSTALLOGRAPHY; CRYSTALLINE; TRANSITIONS; BREAKING; SOLIDS;
D O I
10.1021/acsnano.5b01965
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase-change materials (PCMs) represent the leading candidates for universal data storage devices, which exploit the large difference in the physical properties of their transitional lattice structures. On a nanoscale, it is fundamental to determine their performance, which is ultimately controlled by the speed limit of transformation among the different structures involved. Here, we report observation with atomic-scale resolution of transient structures of nanofilms of crystalline germanium telluride, a prototypical PCM, using ultrafast electron crystallography. A nonthermal transformation from the initial rhombohedral phase to the cubic structure was found to occur in 12 ps. On a much longer time scale, hundreds of picoseconds, equilibrium heating of the nanofilm is reached, driving the system toward amorphization, provided that high excitation energy is invoked. These results elucidate the elementary steps defining the structural pathway in the transformation of crystalline-to-amorphous phase transitions and describe the essential atomic motions involved when driven by an ultrafast excitation. The establishment of the time scales of the different transient structures, as reported here, permits determination of the possible limit of performance, which is crucial for high-speed recording applications of PCMs.
引用
收藏
页码:6728 / 6737
页数:10
相关论文
共 50 条
  • [41] Nonvolatile tuning of Bragg structures using transparent phase-change materials
    Nobile, Nicholas A.
    Lian, Chuanyu
    Sun, Hongyi
    Huang, Yi-Siou
    Mills, Brian
    Popescu, Cosmin Constantin
    Callahan, Dennis
    Hu, Juejun
    Ocampo, Carlos A. Rios
    Youngblood, Nathan
    OPTICAL MATERIALS EXPRESS, 2023, 13 (10) : 2700 - 2710
  • [42] MATERIALS DEVELOPMENTS FOR WRITE-ONCE AND ERASABLE PHASE-CHANGE OPTICAL-RECORDING
    GRAVESTEIJN, DJ
    APPLIED OPTICS, 1988, 27 (04): : 736 - 738
  • [43] Breaking the Speed Limits of Phase-Change Memory
    Loke, D.
    Lee, T. H.
    Wang, W. J.
    Shi, L. P.
    Zhao, R.
    Yeo, Y. C.
    Chong, T. C.
    Elliott, S. R.
    SCIENCE, 2012, 336 (6088) : 1566 - 1569
  • [44] Defects in amorphous phase-change materials
    Luckas, Jennifer
    Krebs, Daniel
    Grothe, Stephanie
    Klomfass, Josef
    Carius, Reinhard
    Longeaud, Christophe
    Wuttig, Matthias
    JOURNAL OF MATERIALS RESEARCH, 2013, 28 (09) : 1139 - 1147
  • [45] Defects in amorphous phase-change materials
    Jennifer Luckas
    Daniel Krebs
    Stephanie Grothe
    Josef Klomfaß
    Reinhard Carius
    Christophe Longeaud
    Matthias Wuttig
    Journal of Materials Research, 2013, 28 : 1139 - 1147
  • [46] ABSORPTION OF PHASE-CHANGE MATERIALS IN CONCRETE
    HAWES, DW
    FELDMAN, D
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1992, 27 (02) : 91 - 101
  • [47] The Myth of "Metavalency" in Phase-Change Materials
    Jones, Robert O.
    Elliott, Stephen R.
    Dronskowski, Richard
    ADVANCED MATERIALS, 2023, 35 (30)
  • [48] PHASE-CHANGE MATERIALS Fast transformers
    Wuttig, Matthias
    Salinga, Martin
    NATURE MATERIALS, 2012, 11 (04) : 270 - 271
  • [49] Modeling InSe phase-change materials
    Kohary, K
    Burlakov, VM
    Nguyen-Manh, D
    Pettifor, DG
    ADVANCED DATA STORAGE MATERIALS AND CHARACTERIZATION TECHNIQUES, 2004, 803 : 173 - 178
  • [50] Reversible switching in phase-change materials
    Welnic, Wojciech
    Wuttig, Matthias
    MATERIALS TODAY, 2008, 11 (06) : 20 - 27