A cluster-based strategy for active learning of RGB-D object detectors

被引:0
|
作者
Bonnin, A. [1 ]
Borras, R. [1 ]
Vitria, J. [2 ,3 ]
机构
[1] Inspecta SL, Campus UAB Edifici Eureka, Bellaterra 08193, Barcelona, Spain
[2] Univ Barcelona, Comp Vis Ctr, Barcelona, Spain
[3] Univ Barcelona, Dept Mate Aplicad & Anal, Barcelona, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method to detect human body parts in depth images that is based on an active learning strategy. Our aim is to built an accurate classifier using a reduced number of labeled samples in order to minimize the training computational cost as well as the image labeling cost. The active learning strategy is based on exploiting the training data distribution by sampling from a cluster-based representation of the dataset. We show that this strategy allows a significant reduction of the number of samples required to train a high performance classifier. We validate our approach on two different scenarios: the detection of human heads of people lying in a bed and the detection of human heads from a ceiling camera.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Object Subtraction Planar RGB-D SLAM
    Souto, Leonardo A. V.
    Nascimento, Tiago P.
    [J]. PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 19 - 24
  • [32] Combining Features For RGB-D object Recognition
    Khan, Wasif
    Phaisangittisagul, Ekachai
    Ali, Luqman
    Gansawat, Duangrat
    Kumazawa, Itsuo
    [J]. 2017 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2017,
  • [33] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 : 37 - 69
  • [34] RGB-D Object Tracking with Occlusion Detection
    Xie, Yujun
    Lu, Yao
    Gu, Shuang
    [J]. 2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 11 - 15
  • [35] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    [J]. Computational Visual Media, 2021, 7 (01) : 37 - 69
  • [36] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    [J]. COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [37] Object Recognition in Noisy RGB-D Data
    Carlos Rangel, Jose
    Morell, Vicente
    Cazorla, Miguel
    Orts-Escolano, Sergio
    Garcia Rodriguez, Jose
    [J]. BIOINSPIRED COMPUTATION IN ARTIFICIAL SYSTEMS, PT II, 2015, 9108 : 261 - 270
  • [38] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [39] Robust 6D Object Pose Estimation by Learning RGB-D Features
    Tian, Meng
    Pan, Liang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6218 - 6224
  • [40] Direct RGB-D Visual Odometry Based on Hybrid Strategy
    Cai, Jiyuan
    Luo, Lingkun
    Yu, Qiuyu
    Liu, Bing
    Hu, Shiqiang
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (20) : 23278 - 23288