Data augmentation strategies for the Bayesian spatial probit regression model

被引:20
|
作者
Berrett, Candace [1 ]
Calder, Catherine A. [2 ]
机构
[1] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
关键词
Conditional and marginal data augmentation; MCMC; Binary data; Latent variable methods; Spatial statistics; BINARY;
D O I
10.1016/j.csda.2011.08.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The well known latent variable representation of the Bayesian probit regression model due to Albert and Chib (1993) allows model fitting to be performed using a simple Gibbs sampler. In addition, various types of dependence among categorical outcomes not explained by covariate information can be accommodated in a straightforward manner as a result of this latent variable representation of the model. One example of this is the spatial probit regression model for spatially-referenced categorical outcomes. In this setting, commonly used covariance structures for describing residual spatial dependence in the normal linear model setting can be imbedded into the probit regression model. Capturing spatial dependence in this way, however, can negatively impact the performance of MCMC model-fitting algorithms, particularly in terms of mixing and sensitivity to starting values. To address these computational issues, we demonstrate how the non-identifiable spatial variance parameter can be used to create data augmentation MCMC algorithms. We compare the performance of several non-collapsed and partially collapsed data augmentation MCMC algorithms through a simulation study and an analysis of land cover data. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:478 / 490
页数:13
相关论文
共 50 条
  • [21] Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle
    Eric B Meltzer
    William T Barry
    Thomas A D'Amico
    Robert D Davis
    Shu S Lin
    Mark W Onaitis
    Lake D Morrison
    Thomas A Sporn
    Mark P Steele
    Paul W Noble
    [J]. BMC Medical Genomics, 4
  • [22] Semiparametric probit regression model with misclassified current status data
    Fang, Lijun
    Li, Shuwei
    Sun, Liuquan
    Song, Xinyuan
    [J]. STATISTICS IN MEDICINE, 2023, 42 (24) : 4440 - 4457
  • [23] A new go-to sampler for Bayesian probit regression
    Simmons, Scott
    McGuffey, Elizabeth J.
    VanDerwerken, Douglas
    [J]. INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (01): : 77 - 89
  • [24] Bayesian group testing regression models for spatial data
    Huang, Rongjie
    McLain, Alexander C.
    Herrin, Brian H.
    Nolan, Melissa
    Cai, Bo
    Self, Stella
    [J]. SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2024, 50
  • [25] Spatial Multivariate Trees for Big Data Bayesian Regression
    Peruzzi, Michele
    Dunson, David B.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [26] Approximate Bayesian logistic regression via penalized likelihood by data augmentation
    Discacciati, Andrea
    Orsini, Nicola
    Greenland, Sander
    [J]. Stata Journal, 2015, 15 (03): : 712 - 736
  • [27] A Bayesian method for multinomial probit model
    Donghyun Koo
    Chanmin Kim
    Keunbaik Lee
    [J]. Journal of the Korean Statistical Society, 2023, 52 : 265 - 281
  • [28] A Bayesian method for multinomial probit model
    Koo, Donghyun
    Kim, Chanmin
    Lee, Keunbaik
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (01) : 265 - 281
  • [29] Spatial dependence of production choice: application of Bayesian Spatial Autoregressive Probit Model on smallholder rubber producers
    Edirisinghe, Jagath Chaminda
    Herath, Keminda
    Jayasinghe-Mudalige, Udith
    Mendis, Sachintha
    [J]. JOURNAL OF AGRICULTURE AND ENVIRONMENT FOR INTERNATIONAL DEVELOPMENT, 2013, 107 (02) : 213 - 227
  • [30] A Bayesian regression model for multivariate functional data
    Rosen, Ori
    Thompson, Wesley K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (11) : 3773 - 3786