Real-Sim-Real Transfer for Real-World Robot Control Policy Learning with Deep Reinforcement Learning

被引:20
|
作者
Liu, Naijun [1 ,2 ]
Cai, Yinghao [1 ]
Lu, Tao [1 ]
Wang, Rui [1 ,3 ]
Wang, Shuo [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Robot & Intelligent Syst, Shenzhen 518055, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 05期
基金
中国国家自然科学基金;
关键词
robot; policy learning; reality gap; simulated environment; deep reinforcement learning; DOMAIN ADAPTATION;
D O I
10.3390/app10051555
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Compared to traditional data-driven learning methods, recently developed deep reinforcement learning (DRL) approaches can be employed to train robot agents to obtain control policies with appealing performance. However, learning control policies for real-world robots through DRL is costly and cumbersome. A promising alternative is to train policies in simulated environments and transfer the learned policies to real-world scenarios. Unfortunately, due to the reality gap between simulated and real-world environments, the policies learned in simulated environments often cannot be generalized well to the real world. Bridging the reality gap is still a challenging problem. In this paper, we propose a novel real-sim-real (RSR) transfer method that includes a real-to-sim training phase and a sim-to-real inference phase. In the real-to-sim training phase, a task-relevant simulated environment is constructed based on semantic information of the real-world scenario and coordinate transformation, and then a policy is trained with the DRL method in the built simulated environment. In the sim-to-real inference phase, the learned policy is directly applied to control the robot in real-world scenarios without any real-world data. Experimental results in two different robot control tasks show that the proposed RSR method can train skill policies with high generalization performance and significantly low training costs.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Real-world Robot Reaching Skill Learning Based on Deep Reinforcement Learning
    Liu, Naijun
    Lu, Tao
    Cai, Yinghao
    Wang, Rui
    Wang, Shuo
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4780 - 4784
  • [2] Survey on Sim-to-real Transfer Reinforcement Learning in Robot Systems
    Lin, Qian
    Yu, Chao
    Wu, Xia-Wei
    Dong, Yin-Zhao
    Xu, Xin
    Zhang, Qiang
    Guo, Xian
    [J]. Ruan Jian Xue Bao/Journal of Software, 2024, 35 (02): : 711 - 738
  • [3] Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey
    Zhao, Wenshuai
    Queralta, Jorge Pena
    Westerlund, Tomi
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 737 - 744
  • [4] Sim-to-real transfer of active suspension control using deep reinforcement learning
    Wiberg, Viktor
    Wallin, Erik
    Falldin, Arvid
    Semberg, Tobias
    Rossander, Morgan
    Wadbro, Eddie
    Servin, Martin
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 179
  • [5] Setting up a Reinforcement Learning Task with a Real-World Robot
    Mahmood, A. Rupam
    Korenkevych, Dmytro
    Komer, Brent J.
    Bergstra, James
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 4635 - 4640
  • [6] Real-world reinforcement learning for autonomous humanoid robot docking
    Navarro-Guerrero, Nicolas
    Weber, Cornelius
    Schroeter, Pascal
    Wermter, Stefan
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2012, 60 (11) : 1400 - 1407
  • [7] Real-World Human-Robot Collaborative Reinforcement Learning
    Shafti, Ali
    Tjomsland, Jonas
    Dudley, William
    Faisal, A. Aldo
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 11161 - 11166
  • [8] Real2Sim or Sim2Real: Robotics Visual Insertion Using Deep Reinforcement Learning and Real2Sim Policy Adaptation
    Chen, Yiwen
    Li, Xue
    Guo, Sheng
    Ng, Xian Yao
    Ang, Marcelo H.
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 17, IAS-17, 2023, 577 : 617 - 629
  • [9] Real-world humanoid locomotion with reinforcement learning
    Radosavovic, Ilija
    Xiao, Tete
    Zhang, Bike
    Darrell, Trevor
    Malik, Jitendra
    Sreenath, Koushil
    [J]. SCIENCE ROBOTICS, 2024, 9 (89)
  • [10] Surrogate empowered Sim2Real transfer of deep reinforcement learning for ORC superheat control
    Lin, Runze
    Luo, Yangyang
    Wu, Xialai
    Chen, Junghui
    Huang, Biao
    Su, Hongye
    Xie, Lei
    [J]. APPLIED ENERGY, 2024, 356