Real-world reinforcement learning for autonomous humanoid robot docking

被引:25
|
作者
Navarro-Guerrero, Nicolas [1 ]
Weber, Cornelius [1 ]
Schroeter, Pascal [1 ]
Wermter, Stefan [1 ]
机构
[1] Univ Hamburg, Dept Informat, Knowledge Technol Grp, D-22527 Hamburg, Germany
关键词
Reinforcement learning; SARSA; Humanoid robots; Autonomous docking; Real-world;
D O I
10.1016/j.robot.2012.05.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Reinforcement learning (RL) is a biologically supported learning paradigm, which allows an agent to learn through experience acquired by interaction with its environment. Its potential to learn complex action sequences has been proven for a variety of problems, such as navigation tasks. However, the interactive randomized exploration of the state space, common in reinforcement learning, makes it difficult to be used in real-world scenarios. In this work we describe a novel real-world reinforcement learning method. It uses a supervised reinforcement learning approach combined with Gaussian distributed state activation. We successfully tested this method in two real scenarios of humanoid robot navigation: first, backward movements for docking at a charging station and second, forward movements to prepare grasping. Our approach reduces the required learning steps by more than an order of magnitude, and it is robust and easy to be integrated into conventional RL techniques. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1400 / 1407
页数:8
相关论文
共 50 条
  • [1] Real-world humanoid locomotion with reinforcement learning
    Radosavovic, Ilija
    Xiao, Tete
    Zhang, Bike
    Darrell, Trevor
    Malik, Jitendra
    Sreenath, Koushil
    [J]. SCIENCE ROBOTICS, 2024, 9 (89)
  • [2] Setting up a Reinforcement Learning Task with a Real-World Robot
    Mahmood, A. Rupam
    Korenkevych, Dmytro
    Komer, Brent J.
    Bergstra, James
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 4635 - 4640
  • [3] Real-World Human-Robot Collaborative Reinforcement Learning
    Shafti, Ali
    Tjomsland, Jonas
    Dudley, William
    Faisal, A. Aldo
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 11161 - 11166
  • [4] Tackling Real-World Autonomous Driving using Deep Reinforcement Learning
    Maramotti, Paolo
    Capasso, Alessandro Paolo
    Bacchiani, Giulio
    Broggi, Alberto
    [J]. 2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1274 - 1281
  • [5] Simulation-Based Reinforcement Learning for Real-World Autonomous Driving
    Osinski, Blazej
    Jakubowski, Adam
    Ziecina, Pawel
    Milos, Piotr
    Galias, Christopher
    Homoceanu, Silviu
    Michalewski, Henryk
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6411 - 6418
  • [6] Real-world Robot Reaching Skill Learning Based on Deep Reinforcement Learning
    Liu, Naijun
    Lu, Tao
    Cai, Yinghao
    Wang, Rui
    Wang, Shuo
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4780 - 4784
  • [7] Exploring Applications of Deep Reinforcement Learning for Real-world Autonomous Driving Systems
    Talpaert, Victor
    Sobh, Ibrahim
    Kiran, B. Ravi
    Mannion, Patrick
    Yogamani, Senthil
    El-Sallab, Ahmad
    Perez, Patrick
    [J]. PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 564 - 572
  • [8] Real-Sim-Real Transfer for Real-World Robot Control Policy Learning with Deep Reinforcement Learning
    Liu, Naijun
    Cai, Yinghao
    Lu, Tao
    Wang, Rui
    Wang, Shuo
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [9] Intrinsically motivated reinforcement learning for human-robot interaction in the real-world
    Qureshi, Ahmed Hussain
    Nakamura, Yutaka
    Yoshikawa, Yuichiro
    Ishiguro, Hiroshi
    [J]. NEURAL NETWORKS, 2018, 107 : 23 - 33
  • [10] Self-organized Learning from Synthetic and Real-World Data for a Humanoid Exercise Robot
    Duczek, Nicolas
    Kerzel, Matthias
    Allgeuer, Philipp
    Wermter, Stefan
    [J]. FRONTIERS IN ROBOTICS AND AI, 2022, 9