A web server for comparative analysis of single-cell RNA-seq data

被引:37
|
作者
Alavi, Amir [1 ]
Ruffalo, Matthew [1 ]
Parvangada, Aiyappa [1 ]
Huang, Zhilin [1 ]
Bar-Joseph, Ziv [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Computat Biol Dept, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
DIMENSIONALITY; ONTOLOGY;
D O I
10.1038/s41467-018-07165-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single cell RNA-Seq (scRNA-seq) studies profile thousands of cells in heterogeneous environments. Current methods for characterizing cells perform unsupervised analysis followed by assignment using a small set of known marker genes. Such approaches are limited to a few, well characterized cell types. We developed an automated pipeline to download, process, and annotate publicly available scRNA-seq datasets to enable large scale supervised characterization. We extend supervised neural networks to obtain efficient and accurate representations for scRNA-seq data. We apply our pipeline to analyze data from over 500 different studies with over 300 unique cell types and show that supervised methods outperform unsupervised methods for cell type identification. A case study highlights the usefulness of these methods for comparing cell type distributions in healthy and diseased mice. Finally, we present scQuery, a web server which uses our neural networks and fast matching methods to determine cell types, key genes, and more.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] scTyper: a comprehensive pipeline for the cell typing analysis of single-cell RNA-seq data
    Choi, Ji-Hye
    In Kim, Hye
    Woo, Hyun Goo
    [J]. BMC BIOINFORMATICS, 2020, 21 (01)
  • [32] Emerging deep learning methods for single-cell RNA-seq data analysis
    Jie Zheng
    Ke Wang
    [J]. Quantitative Biology., 2019, 7 (04) - 254
  • [33] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    [J]. BMC BIOINFORMATICS, 2023, 24 (01)
  • [34] Scaling up single-cell RNA-seq data analysis with CellBridge workflow
    Nouri, Nima
    Kurlovs, Andre H.
    Gaglia, Giorgio
    de Rinaldis, Emanuele
    Savova, Virginia
    [J]. BIOINFORMATICS, 2023, 39 (12)
  • [35] scTyper: a comprehensive pipeline for the cell typing analysis of single-cell RNA-seq data
    Ji-Hye Choi
    Hye In Kim
    Hyun Goo Woo
    [J]. BMC Bioinformatics, 21
  • [36] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [37] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    [J]. BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [38] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [39] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    [J]. Scientific Reports, 13
  • [40] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)