A web server for comparative analysis of single-cell RNA-seq data

被引:37
|
作者
Alavi, Amir [1 ]
Ruffalo, Matthew [1 ]
Parvangada, Aiyappa [1 ]
Huang, Zhilin [1 ]
Bar-Joseph, Ziv [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Computat Biol Dept, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
DIMENSIONALITY; ONTOLOGY;
D O I
10.1038/s41467-018-07165-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single cell RNA-Seq (scRNA-seq) studies profile thousands of cells in heterogeneous environments. Current methods for characterizing cells perform unsupervised analysis followed by assignment using a small set of known marker genes. Such approaches are limited to a few, well characterized cell types. We developed an automated pipeline to download, process, and annotate publicly available scRNA-seq datasets to enable large scale supervised characterization. We extend supervised neural networks to obtain efficient and accurate representations for scRNA-seq data. We apply our pipeline to analyze data from over 500 different studies with over 300 unique cell types and show that supervised methods outperform unsupervised methods for cell type identification. A case study highlights the usefulness of these methods for comparing cell type distributions in healthy and diseased mice. Finally, we present scQuery, a web server which uses our neural networks and fast matching methods to determine cell types, key genes, and more.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data
    Gardeux, Vincent
    David, Fabrice P. A.
    Shajkofci, Adrian
    Schwalie, Petra C.
    Deplancke, Bart
    [J]. BIOINFORMATICS, 2017, 33 (19) : 3123 - 3125
  • [22] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    [J]. CURRENT OSTEOPOROSIS REPORTS, 2023,
  • [23] Embracing the dropouts in single-cell RNA-seq analysis
    Peng Qiu
    [J]. Nature Communications, 11
  • [24] SINGLE-CELL ANALYSIS From single-cell RNA-seq to transcriptional regulation
    La Manno, Gioele
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1421 - 1422
  • [25] Embracing the dropouts in single-cell RNA-seq analysis
    Qiu, Peng
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [26] Emerging deep learning methods for single-cell RNA-seq data analysis
    Zheng, Jie
    Wang, Ke
    [J]. QUANTITATIVE BIOLOGY, 2019, 7 (04) : 247 - 254
  • [27] Evaluating imputation methods for single-cell RNA-seq data
    Yi Cheng
    Xiuli Ma
    Lang Yuan
    Zhaoguo Sun
    Pingzhang Wang
    [J]. BMC Bioinformatics, 24
  • [28] Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis
    Liu, Zhenqiu
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 12
  • [29] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    [J]. NATURE METHODS, 2017, 14 (06) : 584 - +
  • [30] Quantifying the clusterness and trajectoriness of single-cell RNA-seq data
    Lim, Hong Seo
    Qiu, Peng
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)