An improved local tangent space alignment method for manifold learning

被引:40
|
作者
Zhang, Peng [1 ]
Qiao, Hong [2 ]
Zhang, Bo [1 ,3 ]
机构
[1] Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, AMSS, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
关键词
Nonlinear dimensionality reduction; Manifold learning; Data mining; NONLINEAR DIMENSIONALITY REDUCTION; EIGENMAPS;
D O I
10.1016/j.patrec.2010.10.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is widely used in recently proposed manifold learning algorithms to provide approximate local tangent spaces However such approximations provided by PCA may be inaccurate when local neighborhoods of the data manifold do not lie in or close to a linear subspace Furthermore the approximated tangent spaces can not fit the change in data distribution density In this paper a new method is proposed for providing faithful approximations to the local tangent spaces of a data manifold which is proved to be more accurate than PCA With this new method an Improved local tangent space alignment (ILTSA) algorithm is developed which can efficiently recover the geometric structure of data manifolds even in the case when data are sparse or non-uniformly distributed Experimental results are presented to illustrate the better performance of ILTSA on both synthetic data and image data (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:181 / 189
页数:9
相关论文
共 50 条
  • [41] Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment-based manifold learning
    Ma, Chao
    Han, Paul Kyu
    Zhuo, Yue
    Djebra, Yanis
    Marin, Thibault
    El Fakhri, Georges
    MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (04) : 1297 - 1313
  • [42] Manifold Dimensional Reduction Algorithm Based on Tangent Space Discriminant Learning
    Wang R.
    Wu X.-J.
    Ruan Jian Xue Bao/Journal of Software, 2018, 29 (12): : 3786 - 3798
  • [43] Feature extraction using orthogonal discriminant local tangent space alignment
    Ying-Ke Lei
    Yang-Ming Xu
    Jun-An Yang
    Zhi-Guo Ding
    Jie Gui
    Pattern Analysis and Applications, 2012, 15 : 249 - 259
  • [44] Plant Leaf Recognition through Local Discriminative Tangent Space Alignment
    Zhang, Chuanlei
    Zhang, Shanwen
    Fang, Weidong
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2016, 2016
  • [45] Generalised supervised local tangent space alignment for hyperspectral image classification
    Ma, L.
    Crawford, M. M.
    Tian, J. W.
    ELECTRONICS LETTERS, 2010, 46 (07) : 497 - U47
  • [46] ANOMALY DETECTION FOR HYPERSPECTRAL IMAGES USING LOCAL TANGENT SPACE ALIGNMENT
    Ma, Li
    Crawford, Melba M.
    Tian, Jinwen
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 824 - 827
  • [47] Robust Hashing With Local Tangent Space Alignment for Image Copy Detection
    Liang, Xiaoping
    Tang, Zhenjun
    Zhang, Xianquan
    Yu, Mengzhu
    Zhang, Xinpeng
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2448 - 2460
  • [48] Orthogonal discriminant linear local tangent space alignment for face recognition
    Li, Yongzhou
    Luo, Dayong
    Liu, Shaoqiang
    NEUROCOMPUTING, 2009, 72 (4-6) : 1319 - 1323
  • [49] Feature extraction using orthogonal discriminant local tangent space alignment
    Lei, Ying-Ke
    Xu, Yang-Ming
    Yang, Jun-An
    Ding, Zhi-Guo
    Gui, Jie
    PATTERN ANALYSIS AND APPLICATIONS, 2012, 15 (03) : 249 - 259
  • [50] Dimension reduction of microarray data based on local tangent space alignment
    Teng, L
    Li, HY
    Fu, XP
    Chen, WB
    Shen, IF
    ICCI 2005: Fourth IEEE International Conference on Cognitive Informatics - Proceedings, 2005, : 154 - 159