An improved local tangent space alignment method for manifold learning

被引:40
|
作者
Zhang, Peng [1 ]
Qiao, Hong [2 ]
Zhang, Bo [1 ,3 ]
机构
[1] Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, AMSS, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
关键词
Nonlinear dimensionality reduction; Manifold learning; Data mining; NONLINEAR DIMENSIONALITY REDUCTION; EIGENMAPS;
D O I
10.1016/j.patrec.2010.10.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is widely used in recently proposed manifold learning algorithms to provide approximate local tangent spaces However such approximations provided by PCA may be inaccurate when local neighborhoods of the data manifold do not lie in or close to a linear subspace Furthermore the approximated tangent spaces can not fit the change in data distribution density In this paper a new method is proposed for providing faithful approximations to the local tangent spaces of a data manifold which is proved to be more accurate than PCA With this new method an Improved local tangent space alignment (ILTSA) algorithm is developed which can efficiently recover the geometric structure of data manifolds even in the case when data are sparse or non-uniformly distributed Experimental results are presented to illustrate the better performance of ILTSA on both synthetic data and image data (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:181 / 189
页数:9
相关论文
共 50 条
  • [31] A dimensionality reduction method for hyperspectral imagery based on local discriminative tangent space alignment
    Shi, Qian
    Du, Bo
    Zhang, Liangpei
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2012, 41 (03): : 417 - 420
  • [32] TANGENT SPACE TO A CK MANIFOLD
    TAYLOR, LE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (04) : 746 - 746
  • [33] TANGENT SPACE TO A CK MANIFOLD
    TAYLOR, LE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A170 - A170
  • [34] Nonlinear dimension reduction via local tangent space alignment
    Zhang, ZY
    Zha, HY
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 477 - 481
  • [35] Bayesian Transductive Regression via Local Tangent Space Alignment
    Kim, Heun A.
    Noh, Dong-jin
    Yang, Seung-ho
    Lee, Jaewook
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 17 - 20
  • [36] A local tangent space alignment based transductive classification algorithm
    Yin, Jianwei
    Liu, Xiaoming
    Feng, Zhilin
    Dong, Jinxiang
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2006, 4087 : 93 - 106
  • [37] Linear local tangent space alignment and application to face recognition
    Zhang, Tianhao
    Yang, Jie
    Zhao, Deli
    Ge, Xinliang
    NEUROCOMPUTING, 2007, 70 (7-9) : 1547 - 1553
  • [38] Temperature field prediction of lithium-ion batteries using improved local tangent space alignment
    Xu, Kangkang
    Zhuang, Jiawei
    Meng, Xianbing
    Yin, Sihua
    Fan, Jingmin
    Hu, Luoke
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 209
  • [39] Improve local tangent space alignment using various dimensional local coordinates
    Wang, Jing
    NEUROCOMPUTING, 2008, 71 (16-18) : 3575 - 3581
  • [40] Fault diagnosis method using supervised extended local tangent space alignment for dimension reduction
    Su, Zuqiang
    Tang, Baoping
    Deng, Lei
    Liu, Ziran
    MEASUREMENT, 2015, 62 : 1 - 14