Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments

被引:26
|
作者
Bacher, Rhonda [1 ]
Leng, Ning [2 ]
Chu, Li-Fang [2 ]
Ni, Zijian [3 ]
Thomson, James A. [2 ]
Kendziorski, Christina [4 ]
Stewart, Ron [2 ]
机构
[1] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
[2] Morgridge Inst Res, Madison, WI 53715 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Time-course; Gene expression; RNA-seq; Segmented regression; R package; Shiny; TIME-COURSE; GENES;
D O I
10.1186/s12859-018-2405-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundHigh-throughput expression profiling experiments with ordered conditions (e.g. time-course or spatial-course) are becoming more common for studying detailed differentiation processes or spatial patterns. Identifying dynamic changes at both the individual gene and whole transcriptome level can provide important insights about genes, pathways, and critical time points.ResultsWe present an R package, Trendy, which utilizes segmented regression models to simultaneously characterize each gene's expression pattern and summarize overall dynamic activity in ordered condition experiments. For each gene, Trendy finds the optimal segmented regression model and provides the location and direction of dynamic changes in expression. We demonstrate the utility of Trendy to provide biologically relevant results on both microarray and RNA-sequencing (RNA-seq) datasets.ConclusionsTrendy is a flexible R package which characterizes gene-specific expression patterns and summarizes changes of global dynamics over ordered conditions. Trendy is freely available on Bioconductor with a full vignette at https://bioconductor.org/packages/release/bioc/html/Trendy.html.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Linked optical and gene expression profiling of single cells at high-throughput
    Zhang, Jesse Q.
    Siltanen, Christian A.
    Liu, Leqian
    Chang, Kai-Chun
    Gartner, Zev J.
    Abate, Adam R.
    GENOME BIOLOGY, 2020, 21 (01)
  • [32] High-throughput profiling of reactive cysteines
    Sarah Crunkhorn
    Nature Reviews Drug Discovery, 2024, 23 : 107 - 107
  • [33] miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression
    Wei-Chi Wang
    Feng-Mao Lin
    Wen-Chi Chang
    Kuan-Yu Lin
    Hsien-Da Huang
    Na-Sheng Lin
    BMC Bioinformatics, 10
  • [34] The age of high-throughput microRNA profiling
    Aurora Esquela-Kerscher
    Frank J Slack
    Nature Methods, 2004, 1 : 106 - 107
  • [35] IMMUNE PROFILING WITH HIGH-THROUGHPUT SEQUENCING
    Robins, Harlan
    Carlson, Christopher
    HUMAN IMMUNOLOGY, 2011, 72 : S115 - S115
  • [36] The age of high-throughput microRNA profiling
    Esquela-Kerscher, A
    Slack, FJ
    NATURE METHODS, 2004, 1 (02) : 106 - 107
  • [37] Microarray Polymer Profiling (MAPP) for High-Throughput Glycan Analysis
    Bakshani, Cassie R.
    Sangta, Jiraporn
    Sommano, Sarana
    Willats, William G. T.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (199):
  • [38] msBiodat analysis tool, big data analysis for high-throughput experiments
    Munoz-Torres, Pau M.
    Rokc, Filip
    Beluzic, Robert
    Grbesa, Ivana
    Vugrek, Oliver
    BIODATA MINING, 2016, 9
  • [39] msBiodat analysis tool, big data analysis for high-throughput experiments
    Pau M. Muñoz-Torres
    Filip Rokć
    Robert Belužic
    Ivana Grbeša
    Oliver Vugrek
    BioData Mining, 9
  • [40] Podcast: Embracing high-throughput experiments
    Davenport, Matt
    Lemonick, Sam
    CHEMICAL & ENGINEERING NEWS, 2020, 98 (11) : 10 - 10