Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments

被引:26
|
作者
Bacher, Rhonda [1 ]
Leng, Ning [2 ]
Chu, Li-Fang [2 ]
Ni, Zijian [3 ]
Thomson, James A. [2 ]
Kendziorski, Christina [4 ]
Stewart, Ron [2 ]
机构
[1] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
[2] Morgridge Inst Res, Madison, WI 53715 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Time-course; Gene expression; RNA-seq; Segmented regression; R package; Shiny; TIME-COURSE; GENES;
D O I
10.1186/s12859-018-2405-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundHigh-throughput expression profiling experiments with ordered conditions (e.g. time-course or spatial-course) are becoming more common for studying detailed differentiation processes or spatial patterns. Identifying dynamic changes at both the individual gene and whole transcriptome level can provide important insights about genes, pathways, and critical time points.ResultsWe present an R package, Trendy, which utilizes segmented regression models to simultaneously characterize each gene's expression pattern and summarize overall dynamic activity in ordered condition experiments. For each gene, Trendy finds the optimal segmented regression model and provides the location and direction of dynamic changes in expression. We demonstrate the utility of Trendy to provide biologically relevant results on both microarray and RNA-sequencing (RNA-seq) datasets.ConclusionsTrendy is a flexible R package which characterizes gene-specific expression patterns and summarizes changes of global dynamics over ordered conditions. Trendy is freely available on Bioconductor with a full vignette at https://bioconductor.org/packages/release/bioc/html/Trendy.html.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression
    Wang, Wei-Chi
    Lin, Feng-Mao
    Chang, Wen-Chi
    Lin, Kuan-Yu
    Huang, Hsien-Da
    Lin, Na-Sheng
    BMC BIOINFORMATICS, 2009, 10 : 328
  • [22] Microarray-based, high-throughput gene expression profiling of microRNAs
    Nelson, PT
    Baldwin, DA
    Scearce, LM
    Oberholtzer, JC
    Tobias, JW
    Mourelatos, Z
    NATURE METHODS, 2004, 1 (02) : 155 - 161
  • [23] Linked optical and gene expression profiling of single cells at high-throughput
    Jesse Q. Zhang
    Christian A. Siltanen
    Leqian Liu
    Kai-Chun Chang
    Zev J. Gartner
    Adam R. Abate
    Genome Biology, 21
  • [24] High-Throughput Kinase Selectivity Profiling
    Karaman, Mazen
    Jones, Dan
    Gallant, Paul
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2009, 29 (05): : 28 - 28
  • [25] High-Throughput Profiling of Microbial Extracts
    Ito, Tatsuya
    Odake, Takamichi
    Katoh, Hideyuki
    Yamaguchi, Yuichi
    Aoki, Masahiro
    JOURNAL OF NATURAL PRODUCTS, 2011, 74 (05): : 983 - 988
  • [26] High-throughput profiling of reactive cysteines
    Crunkhorn, Sarah
    NATURE REVIEWS DRUG DISCOVERY, 2024, 23 (02) : 107 - 107
  • [27] Microarray-based, high-throughput gene expression profiling of microRNAs
    Nelson P.T.
    Baldwin D.A.
    Scearce L.M.
    Oberholtzer J.C.
    Tobias J.W.
    Mourelatos Z.
    Nature Methods, 2004, 1 (2) : 155 - 161
  • [28] Environmental Risk Assessment of Toxicity Exposure: High-throughput Expression Profiling
    Hong, Ji Young
    Yu, So Yeon
    Ahn, Jeong Jin
    Kim, Seol Young
    Kim, Gi Won
    Kim, Youngjoo
    Son, Sang Wook
    Hwang, Seung Yong
    BIOCHIP JOURNAL, 2016, 10 (01) : 74 - 80
  • [29] Development of aptamer microarrays for high-throughput differential protein expression profiling
    Chen, L. -C.
    Lee, N. C.
    Kao, W. -C.
    Peck, K.
    MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (10) : S269 - S269
  • [30] Environmental risk assessment of toxicity exposure: High-throughput expression profiling
    Ji Young Hong
    So Yeon Yu
    Jeong Jin Ahn
    Seol Young Kim
    Gi Won Kim
    Youngjoo Kim
    Sang Wook Son
    Seung Yong Hwang
    BioChip Journal, 2016, 10 : 74 - 80