Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments

被引:26
|
作者
Bacher, Rhonda [1 ]
Leng, Ning [2 ]
Chu, Li-Fang [2 ]
Ni, Zijian [3 ]
Thomson, James A. [2 ]
Kendziorski, Christina [4 ]
Stewart, Ron [2 ]
机构
[1] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
[2] Morgridge Inst Res, Madison, WI 53715 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Time-course; Gene expression; RNA-seq; Segmented regression; R package; Shiny; TIME-COURSE; GENES;
D O I
10.1186/s12859-018-2405-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundHigh-throughput expression profiling experiments with ordered conditions (e.g. time-course or spatial-course) are becoming more common for studying detailed differentiation processes or spatial patterns. Identifying dynamic changes at both the individual gene and whole transcriptome level can provide important insights about genes, pathways, and critical time points.ResultsWe present an R package, Trendy, which utilizes segmented regression models to simultaneously characterize each gene's expression pattern and summarize overall dynamic activity in ordered condition experiments. For each gene, Trendy finds the optimal segmented regression model and provides the location and direction of dynamic changes in expression. We demonstrate the utility of Trendy to provide biologically relevant results on both microarray and RNA-sequencing (RNA-seq) datasets.ConclusionsTrendy is a flexible R package which characterizes gene-specific expression patterns and summarizes changes of global dynamics over ordered conditions. Trendy is freely available on Bioconductor with a full vignette at https://bioconductor.org/packages/release/bioc/html/Trendy.html.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments
    Rhonda Bacher
    Ning Leng
    Li-Fang Chu
    Zijian Ni
    James A. Thomson
    Christina Kendziorski
    Ron Stewart
    BMC Bioinformatics, 19
  • [2] Segmented correspondence curve regression for quantifying covariate effects on the reproducibility of high-throughput experiments
    Zhang, Feipeng
    Li, Qunhua
    BIOMETRICS, 2023, 79 (03) : 2272 - 2285
  • [3] High-throughput expression profiling techniques
    McClintock, TS
    CHEMICAL SENSES, 2002, 27 (03) : 289 - 291
  • [4] Expression profiling by high-throughput immunohistochemistry
    Warford, A
    Howat, W
    McCafferty, J
    JOURNAL OF IMMUNOLOGICAL METHODS, 2004, 290 (1-2) : 81 - 92
  • [5] Analysis options for high-throughput sequencing in miRNA expression profiling
    Stokowy T.
    Eszlinger M.
    Świerniak M.
    Fujarewicz K.
    Jarza̧b B.
    Paschke R.
    Krohn K.
    BMC Research Notes, 7 (1)
  • [6] High-Throughput Gene-Expression Profiling
    Dyer, Randy
    Glazer, Celeste
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2011, 31 (13): : 38 - 39
  • [7] Gene expression profiling of cerebellar development with high-throughput functional analysis
    Saito, S
    Honma, K
    Kita-Matsuo, HK
    Ochiya, T
    Kato, K
    PHYSIOLOGICAL GENOMICS, 2005, 22 (01) : 8 - 13
  • [8] Arrays of arrays for high-throughput gene expression profiling
    Zarrinkar, PP
    Mainquist, JK
    Zamora, M
    Stern, D
    Welsh, JB
    Sapinoso, LM
    Hampton, GM
    Lockhart, DJ
    GENOME RESEARCH, 2001, 11 (07) : 1256 - 1261
  • [9] Protein expression profiling arrays: tools for the multiplexed high-throughput analysis of proteins
    Jens R Sydor
    Steffen Nock
    Proteome Science, 1 (1)
  • [10] Design and analysis of high-throughput screening experiments
    Xianggui Qu
    Journal of Systems Science and Complexity, 2011, 24 : 711 - 724