Analyzing Simulations in Monte-Carlo Tree Search for the Game of Go

被引:0
|
作者
Fernando, Sumudu [1 ]
Mueller, Martin [1 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
来源
COMPUTERS AND GAMES, CG 2013 | 2014年 / 8427卷
关键词
D O I
10.1007/978-3-319-09165-5_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In Monte-Carlo Tree Search, simulations play a crucial role since they replace the evaluation function used in classical game-tree search and guide the development of the game tree. Despite their importance, not too much is known about the details of how they work. This paper starts a more in-depth study of simulations, using the game of Go, and in particular the program Fuego, as an example. Playout policies are investigated in terms of the number of blunders they make, and in terms of how many points they lose over the course of a simulation. The result is a deeper understanding of the different components of the Fuego playout policy, as well as an analysis of the shortcomings of current methods for evaluating playouts.
引用
收藏
页码:72 / 83
页数:12
相关论文
共 50 条
  • [41] AIs for Dominion Using Monte-Carlo Tree Search
    Tollisen, Robin
    Jansen, Jon Vegard
    Goodwin, Morten
    Glimsdal, Sondre
    [J]. CURRENT APPROACHES IN APPLIED ARTIFICIAL INTELLIGENCE, 2015, 9101 : 43 - 52
  • [42] Converging to a Player Model In Monte-Carlo Tree Search
    Sarratt, Trevor
    Pynadath, David V.
    Jhala, Arnav
    [J]. 2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2014,
  • [43] A SHOGI PROGRAM BASED ON MONTE-CARLO TREE SEARCH
    Sato, Yoshikuni
    Takahashi, Daisuke
    Grimbergen, Reijer
    [J]. ICGA JOURNAL, 2010, 33 (02) : 80 - 92
  • [44] Generalized Mean Estimation in Monte-Carlo Tree Search
    Dam, Tuan
    Klink, Pascal
    D'Eramo, Carlo
    Peters, Jan
    Pajarinen, Joni
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2397 - 2404
  • [45] Automated Machine Learning with Monte-Carlo Tree Search
    Rakotoarison, Herilalaina
    Schoenauer, Marc
    Sebag, Michele
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3296 - 3303
  • [46] CROSS-ENTROPY FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J. B.
    Winands, Mark H. M.
    Szita, Istvan
    van den Herik, H. Jaap
    [J]. ICGA JOURNAL, 2008, 31 (03) : 145 - 156
  • [47] Can Monte-Carlo Tree Search learn to sacrifice?
    Nathan Companez
    Aldeida Aleti
    [J]. Journal of Heuristics, 2016, 22 : 783 - 813
  • [48] Can Monte-Carlo Tree Search learn to sacrifice?
    Companez, Nathan
    Aleti, Aldeida
    [J]. JOURNAL OF HEURISTICS, 2016, 22 (06) : 783 - 813
  • [49] Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search
    Lim, Nengli
    Li, Yueqin
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 209 - 221
  • [50] Parallel Monte-Carlo Tree Search for HPC Systems
    Graf, Tobias
    Lorenz, Ulf
    Platzner, Marco
    Schaefers, Lars
    [J]. EURO-PAR 2011 PARALLEL PROCESSING, PT 2, 2011, 6853 : 365 - 376