Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors

被引:172
|
作者
Vitiello, Miriam S. [1 ,2 ,3 ]
Coquillat, Dominique [4 ,5 ]
Viti, Leonardo [2 ,3 ]
Ercolani, Daniele [2 ,3 ]
Teppe, Frederic [4 ,5 ]
Pitanti, Alessandro [2 ,3 ]
Beltram, Fabio [2 ,3 ]
Sorba, Lucia [2 ,3 ]
Knap, Wojciech [4 ,5 ]
Tredicucci, Alessandro [2 ,3 ]
机构
[1] CNR, Ist Fis Applicata Nello Carrara, I-50019 Sesto Fiorentino, Italy
[2] CNR, Ist Nanosci, NEST, I-56127 Pisa, Italy
[3] CNR, Scuola Normale Super, I-56127 Pisa, Italy
[4] Univ Montpellier 2, F-34095 Montpellier, France
[5] CNRS, TERALAB GIS, L2C UMR 5221, F-34095 Montpellier, France
关键词
Nanowires; nanophotonic devices; tera hertz; field-effect transistors; NONRESONANT DETECTION; RADIATION; MOBILITY; DEVICES; GROWTH; GATE;
D O I
10.1021/nl2030486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The growth of semiconductor nanowires (NWs) has recently opened new paths to silicon integration of device families such as light-emitting diodes, high-efficiency photovoltaics, or high-responsivity photodetectors. It is also offering a wealth of new approaches for the development of a future generation of nanoelectronic devices. Here we demonstrate that semiconductor nanowires can also be used as building blocks for the realization of high-sensitivity terahertz detectors based on a 1D field-effect transistor, configuration. In order to take advantage of the low effective mass and high mobilities achievable in III-V compounds, we have used InAs nanowires, grown by vapor-phase epitaxy, and properly doped with selenium to control the charge density and to optimize source drain and contact resistance. The detection mechanism exploits the nonlinearity of the transfer characteristics: the terahertz radiation field is fed at the gate-source electrodes with wide band antennas, and the rectified signal is then read at the output in the form of a DC drain voltage. Significant responsivity values (>1 V/W) at 0.3 THz have been obtained with noise equivalent powers (NEP) < 2 x 10(-9) W/(Hz)(1/2) at room temperature. The large existing margins for technology improvements, the scalability to higher frequencies, and the possibility of realizing multipiixel arrays, make these devices highly competitive as a future solution for terahertz detection.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [41] Photosensitivity of Field-Effect Transistors Based on ZnO Nanowire Networks
    Peng, Shi-Ming
    Su, Yan-Kuin
    Ji, Liang-Wen
    Young, Sheng-Joue
    Wu, Cheng-Zhi
    Cheng, Wei-Bin
    Chao, Wan-Chun
    Tsai, Chi-Nan
    [J]. IEEE ELECTRON DEVICE LETTERS, 2011, 32 (03) : 339 - 341
  • [42] Semitransparent Field-Effect Transistors Based on ZnO Nanowire Networks
    Peng, Shi-Ming
    Su, Yan-Kuin
    Ji, Liang-Wen
    Young, Sheng-Joue
    Tsai, Chi-Nan
    Chao, Wan-Chun
    Chen, Zong-Syun
    Wu, Cheng-Zhi
    [J]. IEEE ELECTRON DEVICE LETTERS, 2011, 32 (04) : 533 - 535
  • [43] Field-Effect Transistors Based on Welded SnGaO Nanowire Networks
    Fu, Chuanyu
    Ding, Yanan
    Zhu, Yixin
    Xin, Zhijie
    Liu, Guoxia
    Shan, Fukai
    [J]. IEEE ELECTRON DEVICE LETTERS, 2021, 42 (01) : 58 - 61
  • [44] Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature
    Y. Mei
    C. Zhang
    Z. V. Vardeny
    O. D. Jurchescu
    [J]. MRS Communications, 2015, 5 : 297 - 301
  • [45] Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors
    Feng, Ping
    Shao, Feng
    Shi, Yi
    Wan, Qing
    [J]. SENSORS, 2014, 14 (09) : 17406 - 17429
  • [46] Temperature dependent properties of InSb and InAs nanowire field-effect transistors
    Nilsson, Henrik A.
    Caroff, Philippe
    Thelander, Claes
    Lind, Erik
    Karlstrom, Olov
    Wernersson, Lars-Erik
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (15)
  • [47] Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy
    Wiecha, Matthias M.
    Kapoor, Rohit
    Chernyadiev, Alexander, V
    Ikamas, Kestutis
    Lisauskas, Alvydas
    Roskos, Hartmut G.
    [J]. NANOSCALE ADVANCES, 2021, 3 (06): : 1717 - 1724
  • [48] Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature
    Mei, Y.
    Zhang, C.
    Vardeny, Z. V.
    Jurchescu, O. D.
    [J]. MRS COMMUNICATIONS, 2015, 5 (02) : 297 - 301
  • [49] Sensitivity of Field-Effect Transistor-Based Terahertz Detectors
    Javadi, Elham
    But, Dmytro B.
    Ikamas, Kestutis
    Zdanevicius, Justinas
    Knap, Wojciech
    Lisauskas, Alvydas
    [J]. SENSORS, 2021, 21 (09)
  • [50] Room-temperature oxide field-effect transistor with buried channel
    Misewich, JA
    Schrott, AG
    [J]. APPLIED PHYSICS LETTERS, 2000, 76 (24) : 3632 - 3634