Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors

被引:172
|
作者
Vitiello, Miriam S. [1 ,2 ,3 ]
Coquillat, Dominique [4 ,5 ]
Viti, Leonardo [2 ,3 ]
Ercolani, Daniele [2 ,3 ]
Teppe, Frederic [4 ,5 ]
Pitanti, Alessandro [2 ,3 ]
Beltram, Fabio [2 ,3 ]
Sorba, Lucia [2 ,3 ]
Knap, Wojciech [4 ,5 ]
Tredicucci, Alessandro [2 ,3 ]
机构
[1] CNR, Ist Fis Applicata Nello Carrara, I-50019 Sesto Fiorentino, Italy
[2] CNR, Ist Nanosci, NEST, I-56127 Pisa, Italy
[3] CNR, Scuola Normale Super, I-56127 Pisa, Italy
[4] Univ Montpellier 2, F-34095 Montpellier, France
[5] CNRS, TERALAB GIS, L2C UMR 5221, F-34095 Montpellier, France
关键词
Nanowires; nanophotonic devices; tera hertz; field-effect transistors; NONRESONANT DETECTION; RADIATION; MOBILITY; DEVICES; GROWTH; GATE;
D O I
10.1021/nl2030486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The growth of semiconductor nanowires (NWs) has recently opened new paths to silicon integration of device families such as light-emitting diodes, high-efficiency photovoltaics, or high-responsivity photodetectors. It is also offering a wealth of new approaches for the development of a future generation of nanoelectronic devices. Here we demonstrate that semiconductor nanowires can also be used as building blocks for the realization of high-sensitivity terahertz detectors based on a 1D field-effect transistor, configuration. In order to take advantage of the low effective mass and high mobilities achievable in III-V compounds, we have used InAs nanowires, grown by vapor-phase epitaxy, and properly doped with selenium to control the charge density and to optimize source drain and contact resistance. The detection mechanism exploits the nonlinearity of the transfer characteristics: the terahertz radiation field is fed at the gate-source electrodes with wide band antennas, and the rectified signal is then read at the output in the form of a DC drain voltage. Significant responsivity values (>1 V/W) at 0.3 THz have been obtained with noise equivalent powers (NEP) < 2 x 10(-9) W/(Hz)(1/2) at room temperature. The large existing margins for technology improvements, the scalability to higher frequencies, and the possibility of realizing multipiixel arrays, make these devices highly competitive as a future solution for terahertz detection.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [1] Room Temperature Terahertz detectors based on semiconductor nanowire field effect transistors
    Vitiello, Miriam Serena
    Coquillat, Dominique
    Viti, Leonardo
    Ercolani, Daniele
    Teppe, Frederic
    Pitanti, Alessandro
    Beltram, Fabio
    Sorba, Lucia
    Knap, Wojciech
    Tredicucci, Alessandro
    [J]. QUANTUM SENSING AND NANOPHOTONIC DEVICES IX, 2012, 8268
  • [2] Graphene field-effect transistors as room-temperature terahertz detectors
    Vicarelli, L.
    Vitiello, M. S.
    Coquillat, D.
    Lombardo, A.
    Ferrari, A. C.
    Knap, W.
    Polini, M.
    Pellegrini, V.
    Tredicucci, A.
    [J]. NATURE MATERIALS, 2012, 11 (10) : 865 - 871
  • [3] Graphene field-effect transistors as room-temperature terahertz detectors
    L. Vicarelli
    M. S. Vitiello
    D. Coquillat
    A. Lombardo
    A. C. Ferrari
    W. Knap
    M. Polini
    V. Pellegrini
    A. Tredicucci
    [J]. Nature Materials, 2012, 11 : 865 - 871
  • [4] Room-temperature terahertz detectors fabricated using graphene field-effect transistors
    Trohalaki, Steven
    [J]. MRS BULLETIN, 2012, 37 (11) : 987 - 987
  • [5] Nano Focus: Room-temperature terahertz detectors fabricated using graphene field-effect transistors
    Steven Trohalaki
    [J]. MRS Bulletin, 2012, 37 : 987 - 987
  • [6] Room-temperature terahertz emission from nanometer field-effect transistors
    Dyakonova, N
    El Fatimy, A
    Lusakowski, J
    Knap, W
    Dyakonov, MI
    Poisson, MA
    Morvan, E
    Bollaert, S
    Shchepetov, A
    Roelens, Y
    Gaquiere, C
    Theron, D
    Cappy, A
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (14)
  • [7] Room-temperature terahertz emission from nanometer field-effect transistors
    Dyakonova, N.
    El Fatimy, A.
    Lusakowskil, J.
    Knap, W.
    Dyakonov, M. I.
    Poisson, M. -A.
    Morvan, E.
    Bollaert, S.
    Shchepetov, A.
    Roelens, Y.
    Gaquiere, Ch.
    Theron, D.
    Cappy, A.
    [J]. CONFERENCE DIGEST OF THE 2006 JOINT 31ST INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 14TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, 2006, : 145 - 145
  • [8] Semiconductor Nanowire Field-Effect Transistors as Sensitive Detectors in the Far-Infrared
    Asgari, Mahdi
    Viti, Leonardo
    Zannier, Valentina
    Sorba, Lucia
    Vitiello, Miriam Serena
    [J]. NANOMATERIALS, 2021, 11 (12)
  • [9] Silicon junctionless field effect transistors as room temperature terahertz detectors
    Marczewski, J.
    Knap, W.
    Tomaszewski, D.
    Zaborowski, M.
    Zagrajek, P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 118 (10)
  • [10] Room-Temperature Quantum Confinement Effects in Transport Properties of Ultrathin Si Nanowire Field-Effect Transistors
    Yi, Kyung Soo
    Trivedi, Krutarth
    Floresca, Herman C.
    Yuk, Hyungsang
    Hu, Walter
    Kim, Moon J.
    [J]. NANO LETTERS, 2011, 11 (12) : 5465 - 5470