LEARNING TO INVERT: SIGNAL RECOVERY VIA DEEP CONVOLUTIONAL NETWORKS

被引:0
|
作者
Mousavi, Ali [1 ]
Baraniuk, Richard G. [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
关键词
Deep Learning; Compressive Sensing; Convolutional Neural Networks;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The promise of compressive sensing (CS) has been offset by two significant challenges. First, real-world data is not exactly sparse in a fixed basis. Second, current high-performance recovery algorithms are slow to converge, which limits CS to either non-real-time applications or scenarios where massive back-end computing is available. In this paper, we attack both of these challenges head-on by developing a new signal recovery framework we call DeepInverse that learns the inverse transformation from measurement vectors to signals using a deep convolutional network. When trained on a set of representative images, the network learns both a representation for the signals (addressing challenge one) and an inverse map approximating a greedy or convex recovery algorithm (addressing challenge two). Our experiments indicate that the DeepInverse network closely approximates the solution produced by state-of-the-art CS recovery algorithms yet is hundreds of times faster in run time. The tradeoff for the ultrafast run time is a computationally intensive, off-line training procedure typical to deep networks. However, the training needs to be completed only once, which makes the approach attractive for a host of sparse recovery problems.
引用
收藏
页码:2272 / 2276
页数:5
相关论文
共 50 条
  • [41] Fully Automatic Karyotyping via Deep Convolutional Neural Networks
    Wang, Chengyu
    Yu, Limin
    Su, Jionglong
    Shen, Juming
    Selis, Valerio
    Yang, Chunxiao
    Ma, Fei
    IEEE ACCESS, 2024, 12 : 46081 - 46092
  • [42] Brain Tissue Segmentation via Deep Convolutional Neural Networks
    Bikku, Thulasi
    Karthik, Jayavarapu
    Rao, Ganga Rama Koteswara
    Sree, K. P. N. V. Satya
    Srinivas, P. V. V. S.
    Prasad, Chitturi
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 757 - 763
  • [43] AutoShuffleNet: Learning Permutation Matrices via an Exact Lipschitz Continuous Penalty in Deep Convolutional Neural Networks
    Lyu, Jiancheng
    Zhang, Shuai
    Qi, Yingyong
    Xin, Jack
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 608 - 616
  • [44] A NOISE ROBUST FACE HALLUCINATION FRAMEWORK VIA CASCADED MODEL OF DEEP CONVOLUTIONAL NETWORKS AND MANIFOLD LEARNING
    Liu, Han
    Han, Zhen
    Guo, Jin
    Ding, Xin
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [45] SmartTRO: Optimizing topology robustness for Internet of Things via deep reinforcement learning with graph convolutional networks
    Peng, Yabin
    Liu, Caixia
    Liu, Shuxin
    Liu, Yuchen
    Wu, Yiteng
    COMPUTER NETWORKS, 2022, 218
  • [46] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [47] Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
    Shen, Li
    Lin, Zhouchen
    Huang, Qingming
    COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 467 - 482
  • [48] Residual learning of deep convolutional neural networks for image denoising
    Shan, Chuanhui
    Guo, Xirong
    Ou, Jun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (02) : 2809 - 2818
  • [49] Respiratory Sounds Feature Learning with Deep Convolutional Neural Networks
    Liu, Yongpeng
    Lin, Yusong
    Gao, Shan
    Zhang, Hongpo
    Wang, Zongmin
    Gao, Yang
    Chen, Guanling
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 170 - 177
  • [50] Deep Learning Convolutional Neural Networks with Dropout - a Parallel Approach
    Shen, Jingyi
    Shafiq, M. Omair
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 572 - 577