LEARNING TO INVERT: SIGNAL RECOVERY VIA DEEP CONVOLUTIONAL NETWORKS

被引:0
|
作者
Mousavi, Ali [1 ]
Baraniuk, Richard G. [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
关键词
Deep Learning; Compressive Sensing; Convolutional Neural Networks;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The promise of compressive sensing (CS) has been offset by two significant challenges. First, real-world data is not exactly sparse in a fixed basis. Second, current high-performance recovery algorithms are slow to converge, which limits CS to either non-real-time applications or scenarios where massive back-end computing is available. In this paper, we attack both of these challenges head-on by developing a new signal recovery framework we call DeepInverse that learns the inverse transformation from measurement vectors to signals using a deep convolutional network. When trained on a set of representative images, the network learns both a representation for the signals (addressing challenge one) and an inverse map approximating a greedy or convex recovery algorithm (addressing challenge two). Our experiments indicate that the DeepInverse network closely approximates the solution produced by state-of-the-art CS recovery algorithms yet is hundreds of times faster in run time. The tradeoff for the ultrafast run time is a computationally intensive, off-line training procedure typical to deep networks. However, the training needs to be completed only once, which makes the approach attractive for a host of sparse recovery problems.
引用
收藏
页码:2272 / 2276
页数:5
相关论文
共 50 条
  • [21] Deep Learning Convolutional Neural Networks for Radio Identification
    Riyaz, Shamnaz
    Sankhe, Kunal
    Ioannidis, Stratis
    Chowdhury, Kaushik
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (09) : 146 - 152
  • [22] Learning ability of interpolating deep convolutional neural networks
    Zhou, Tian-Yi
    Huo, Xiaoming
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 68
  • [23] Deep Learning of Graphs with Ngram Convolutional Neural Networks
    Luo, Zhiling
    Liu, Ling
    Yin, Jianwei
    Li, Ying
    Wu, Zhaohui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (10) : 2125 - 2139
  • [24] LEARNING CONVOLUTIONAL NEURAL NETWORKS WITH DEEP PART EMBEDDINGS
    Gupta, Nitin
    Mujumdar, Shashank
    Agarwal, Prerna
    Jain, Abhinav
    Mehta, Sameep
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2037 - 2041
  • [25] Convolutional deep-learning artificial neural networks
    Lutsiv, V. P.
    JOURNAL OF OPTICAL TECHNOLOGY, 2015, 82 (08) : 499 - 508
  • [26] DRCDN: learning deep residual convolutional dehazing networks
    Shengdong Zhang
    Fazhi He
    The Visual Computer, 2020, 36 : 1797 - 1808
  • [27] Deep learning electromagnetic inversion with convolutional neural networks
    Puzyrev, Vladimir
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 218 (02) : 817 - 832
  • [28] A primer on deep learning and convolutional neural networks for clinicians
    Lara Lloret Iglesias
    Pablo Sanz Bellón
    Amaia Pérez del Barrio
    Pablo Menéndez Fernández-Miranda
    David Rodríguez González
    José A. Vega
    Andrés A. González Mandly
    José A. Parra Blanco
    Insights into Imaging, 12
  • [29] A primer on deep learning and convolutional neural networks for clinicians
    Iglesias, Lara Lloret
    Bellon, Pablo Sanz
    del Barrio, Amaia Perez
    Fernandez-Miranda, Pablo Menendez
    Gonzalez, David Rodriguez
    Vega, Jose A.
    Mandly, Andres A. Gonzalez
    Blanco, Jose A. Parra
    INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [30] Hebbian Learning Meets Deep Convolutional Neural Networks
    Amato, Giuseppe
    Carrara, Fabio
    Falchi, Fabrizio
    Gennaro, Claudio
    Lagani, Gabriele
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT I, 2019, 11751 : 324 - 334