Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations

被引:27
|
作者
Stevenson, Rob [1 ]
Westerdiep, Jan [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries KdV Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
parabolic PDEs; space-time variational formulations; quasi-best approximations; stability; ADAPTIVE WAVELET METHODS; L-2-PROJECTION;
D O I
10.1093/imanum/drz069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze Galerkin discretizations of a new well-posed mixed space-time variational formulation of parabolic partial differential equations. For suitable pairs of finite element trial spaces, the resulting Galerkin operators are shown to be uniformly stable. The method is compared to two related space-time discretization methods introduced by Andreev (2013, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal., 33, 242-260) and by Steinbach (2015, Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math., 15, 551-566).
引用
收藏
页码:28 / 47
页数:20
相关论文
共 50 条
  • [1] Stability of Petrov-Galerkin Discretizations: Application to the Space-Time Weak Formulation for Parabolic Evolution Problems
    Mollet, Christian
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (02) : 231 - 255
  • [2] Stability of sparse space-time finite element discretizations of linear parabolic evolution equations
    Andreev, Roman
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) : 242 - 260
  • [3] ADAPTIVITY WITH DYNAMIC MESHES FOR SPACE-TIME FINITE ELEMENT DISCRETIZATIONS OF PARABOLIC EQUATIONS
    Schmich, Michael
    Vexler, Boris
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (01): : 369 - 393
  • [4] Minimal residual space-time discretizations of parabolic equations: Asymmetric spatial operators
    Stevenson, Rob
    Westerdiep, Jan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 101 : 107 - 118
  • [5] A fast Galerkin method for parabolic space-time boundary integral equations
    Messner, Michael
    Schanz, Martin
    Tausch, Johannes
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 258 : 15 - 30
  • [6] A splitting mixed space-time discontinuous Galerkin method for parabolic problems
    He, Siriguleng
    Li, Hong
    Liu, Yang
    Fang, Zhichao
    Yang, Jingbo
    Jia, Xianbiao
    INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 1050 - 1059
  • [7] A POSTERIORI ERROR ESTIMATES FOR HIGHER ORDER SPACE-TIME GALERKIN DISCRETIZATIONS OF NONLINEAR PARABOLIC PROBLEMS
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1486 - 1509
  • [8] An adaptive space-time Newton-Galerkin approach for semilinear singularly perturbed parabolic evolution equations
    Amrein, Mario
    Wihler, Thomas P.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) : 2004 - 2019
  • [9] Conditional space-time stability of collocation Runge-Kutta for parabolic evolution equations
    Andreev, Roman
    Schweitzer, Julia
    Electronic Transactions on Numerical Analysis, 2014, 41 : 62 - 80
  • [10] CONDITIONAL SPACE-TIME STABILITY OF COLLOCATION RUNGE- KUTTA FOR PARABOLIC EVOLUTION EQUATIONS
    Andreev, Roman
    Schweitzer, Julia
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 62 - 80