Explaining universality: infinite limit systems in the renormalization group method

被引:5
|
作者
Wu, Jingyi [1 ]
机构
[1] Univ Calif Irvine, Dept Log & Philosophy Sci, Irvine, CA 92697 USA
关键词
Renormalization group method; Scientific explanation; Infinite idealizations; Linearization*; Critical phase transitions; IDEALIZATIONS;
D O I
10.1007/s11229-021-03448-2
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
I analyze the role of infinite idealizations used in the renormalization group (RG hereafter) method in explaining universality across microscopically different physical systems in critical phenomena. I argue that despite the reference to infinite limit systems such as systems with infinite correlation lengths during the RG process, the key to explaining universality in critical phenomena need not involve infinite limit systems. I develop my argument by introducing what I regard as the explanatorily relevant property in RG explanations: linearization* property; I then motivate and prove a proposition about the linearization* property in support of my view. As a result, infinite limit systems in RG explanations are dispensable.
引用
收藏
页码:14897 / 14930
页数:34
相关论文
共 50 条
  • [41] An infrared renormalization group limit cycle in QCD
    Braaten, E
    Hammer, HW
    PHYSICAL REVIEW LETTERS, 2003, 91 (10)
  • [42] RENORMALIZATION GROUP AND LARGE N-LIMIT
    MA, SK
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (11) : 1866 - 1891
  • [43] Generalized Central Limit Theorem and Renormalization Group
    Calvo, Ivan
    Cuchi, Juan C.
    Esteve, Jose G.
    Falceto, Fernando
    JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (03) : 409 - 421
  • [44] Limit Cycles from the Similarity Renormalization Group
    P. Niemann
    H.-W. Hammer
    Few-Body Systems, 2015, 56 : 869 - 879
  • [45] RENORMALIZATION GROUP AND ULTRAVIOLET ASYMPTOTIC LIMIT OF SCATTERING
    GINZBURG, IF
    SHIRKOV, DV
    SOVIET PHYSICS JETP-USSR, 1966, 22 (01): : 234 - &
  • [46] Counting limit cycles with the help of the renormalization group
    Das, D.
    Banerjee, D.
    Bhattacharjee, J. K.
    Mallik, A. K.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 61 (02): : 443 - 448
  • [47] Limit Cycles from the Similarity Renormalization Group
    Niemann, P.
    Hammer, H. -W.
    FEW-BODY SYSTEMS, 2015, 56 (11-12) : 869 - 879
  • [48] Center or limit cycle: renormalization group as a probe
    A. Sarkar
    J. K. Bhattacharjee
    S. Chakraborty
    D. B. Banerjee
    The European Physical Journal D, 2011, 64 : 479 - 489
  • [49] Counting limit cycles with the help of the renormalization group
    D. Das
    D. Banerjee
    J. K. Bhattacharjee
    A. K. Mallik
    The European Physical Journal D, 2011, 61 : 443 - 448
  • [50] APPLICATION OF THE NUMERICAL RENORMALIZATION-GROUP METHOD TO THE HUBBARD-MODEL IN INFINITE DIMENSIONS
    SAKAI, O
    KURAMOTO, Y
    SOLID STATE COMMUNICATIONS, 1994, 89 (04) : 307 - 311